Journal Article FZJ-2018-02808

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Dissolution behavior of MgO based inert matrix fuel for the transmutation of minor actinides

 ;  ;  ;  ;  ;  ;  ;

2018
Elsevier Science Amsterdam [u.a.]

Journal of nuclear materials 505, 94 - 104 () [10.1016/j.jnucmat.2018.04.001]

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: This study explores the dissolution properties of magnesia-based inert matrix nuclear fuel (IMF) containing transuranium elements (TRU). Pure MgO pellets as well as MgO pellets containing CeO2, as surrogate for TRU oxides, and are considered as model systems for genuine magnesia based inert matrix fuel were fabricated. The aim of this study is to identify conditions at which the matrix material can be selectively dissolved during the head-end reprocessing step, allowing a separation of MgO from the actinides, whereas the actinides remain undissolved. The dissolution behavior was studied in macroscopic batch experiments as a function of nitric acid concentration, dissolution medium volume, temperature, stirring velocity, and pellet density (85, 90, 96, and 99%TD). To mimic pellets with various burn-ups the density of the here fabricated pellets was varied. MgO is soluble even under mild conditions (RT, 2.5 mol/L HNO3). The dissolution rates of MgO at different acid concentrations are rather similar, whereas the dissolution rate is strongly dependent on the temperature. Via a microscopic approach, a model was developed to describe the evolution of the pellet surface area during dissolution and determine a surface normalized dissolution rate. Moreover, dissolution rates of the inert matrix fuel containing CeO2 were determined as a function of the acid concentration and temperature. During the dissolution of MgO/CeO2 pellets the MgO dissolves completely, while CeO2 (>99%) remains undissolved. This study intends to provide a profound understanding of the chemical performance of magnesia based IMF containing fissile material. The feasibility of the dissolution of magnesia based IMF with nitric acid is discussed.

Classification:

Contributing Institute(s):
  1. Nukleare Entsorgung und Reaktorsicherheit (IEK-6)
Research Program(s):
  1. 161 - Nuclear Waste Management (POF3-161) (POF3-161)
  2. ASGARD - Advanced fuelS for Generation IV reActors: Reprocessing and Dissolution (295825) (295825)

Appears in the scientific report 2018
Database coverage:
Current Contents - Engineering, Computing and Technology ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; IF < 5 ; JCR ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IFN > IFN-2
Workflow collections > Public records
IEK > IEK-6
Publications database

 Record created 2018-05-07, last modified 2024-07-12


Restricted:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)