000846019 001__ 846019
000846019 005__ 20210129233816.0
000846019 0247_ $$2doi$$a10.3389/fpls.2018.00655
000846019 0247_ $$2Handle$$a2128/18768
000846019 0247_ $$2WOS$$aWOS:000432651900001
000846019 0247_ $$2altmetric$$aaltmetric:42896000
000846019 0247_ $$2pmid$$apmid:29872444
000846019 037__ $$aFZJ-2018-03189
000846019 041__ $$aEnglish
000846019 082__ $$a570
000846019 1001_ $$0P:(DE-HGF)0$$aPrerostova, Sylva$$b0
000846019 245__ $$aCytokinins: Their Impact on Molecular and Growth Responses to Drought Stress and Recovery in Arabidopsis
000846019 260__ $$aLausanne$$bFrontiers Media88991$$c2018
000846019 3367_ $$2DRIVER$$aarticle
000846019 3367_ $$2DataCite$$aOutput Types/Journal article
000846019 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1527688066_1808
000846019 3367_ $$2BibTeX$$aARTICLE
000846019 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000846019 3367_ $$00$$2EndNote$$aJournal Article
000846019 520__ $$aOur phenotyping and hormonal study has characterized the role of cytokinins (CK) in the drought and recovery responses of Arabidopsis thaliana. CK down-regulation was achieved by overexpression of the gene for CK deactivating enzyme cytokinin oxidase/dehydrogenase (CKX): constitutive (35S:CKX) or at the stress onset using a dexamethasone-inducible pOp/LhGR promoter (DEX:CKX). The 35S:CKX plants exhibited slow ontogenesis and higher expression levels of stress-associated genes, e.g., AtP5CS1, already at well-watered conditions. CK down-regulation resulted during drought in higher stress tolerance (indicated by relatively low up-regulation of the expression of drought stress marker gene AtRD29B) accompanied with lower leaf water loss. Nevertheless, these plants exhibited slow and delayed recovery after re-watering. CK levels were increased at the stress onset by stimulation of the expression of CK biosynthetic gene isopentenyl transferase (ipt) (DEX:IPT) or by application of exogenous CK meta-topolin. After water withdrawal, long-term CK elevation resulted in higher water loss in comparison with CKX transformants as well as with plants overexpressing ipt driven by senescence-inducible SAG12 promoter (SAG:IPT), which gradually enhanced CKs during the stress progression. In all cases, CK up-regulation resulted in fast and more vigorous recovery. All drought-stressed plants exhibited growth suppression associated with elevation of abscisic acid and decrease of auxins and active CKs (with the exception of SAG:IPT plants). Apart from the ipt overexpressers, also increase of jasmonic and salicylic acid was found.
000846019 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0
000846019 536__ $$0G:(EU-Grant)284443$$aEPPN - European Plant Phenotyping Network (284443)$$c284443$$fFP7-INFRASTRUCTURES-2011-1$$x1
000846019 588__ $$aDataset connected to CrossRef
000846019 7001_ $$0P:(DE-HGF)0$$aDobrev, Petre I.$$b1
000846019 7001_ $$0P:(DE-HGF)0$$aGaudinova, Alena$$b2
000846019 7001_ $$0P:(DE-HGF)0$$aKnirsch, Vojtech$$b3
000846019 7001_ $$0P:(DE-HGF)0$$aKörber, Niklas$$b4
000846019 7001_ $$0P:(DE-Juel1)129379$$aPieruschka, Roland$$b5$$ufzj
000846019 7001_ $$0P:(DE-Juel1)143649$$aFiorani, Fabio$$b6$$ufzj
000846019 7001_ $$0P:(DE-HGF)0$$aBrzobohatý, Břetislav$$b7
000846019 7001_ $$0P:(DE-HGF)0$$ačerný, Martin$$b8
000846019 7001_ $$0P:(DE-HGF)0$$aSpichal, Lukas$$b9
000846019 7001_ $$0P:(DE-HGF)0$$aHumplik, Jan$$b10
000846019 7001_ $$0P:(DE-HGF)0$$aVanek, Tomas$$b11
000846019 7001_ $$0P:(DE-Juel1)129402$$aSchurr, Ulrich$$b12$$ufzj
000846019 7001_ $$0P:(DE-HGF)0$$aVankova, Radomira$$b13$$eCorresponding author
000846019 773__ $$0PERI:(DE-600)2711035-7$$a10.3389/fpls.2018.00655$$gVol. 9, p. 655$$p655$$tFrontiers in Functional Plant Ecology$$v9$$x1664-462X$$y2018
000846019 8564_ $$uhttps://juser.fz-juelich.de/record/846019/files/fpls-09-00655.pdf$$yOpenAccess
000846019 8564_ $$uhttps://juser.fz-juelich.de/record/846019/files/fpls-09-00655.gif?subformat=icon$$xicon$$yOpenAccess
000846019 8564_ $$uhttps://juser.fz-juelich.de/record/846019/files/fpls-09-00655.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000846019 8564_ $$uhttps://juser.fz-juelich.de/record/846019/files/fpls-09-00655.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000846019 8564_ $$uhttps://juser.fz-juelich.de/record/846019/files/fpls-09-00655.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000846019 8564_ $$uhttps://juser.fz-juelich.de/record/846019/files/fpls-09-00655.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000846019 909CO $$ooai:juser.fz-juelich.de:846019$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000846019 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129379$$aForschungszentrum Jülich$$b5$$kFZJ
000846019 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143649$$aForschungszentrum Jülich$$b6$$kFZJ
000846019 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129402$$aForschungszentrum Jülich$$b12$$kFZJ
000846019 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000846019 9141_ $$y2018
000846019 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000846019 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000846019 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000846019 915__ $$0StatID:(DE-HGF)0040$$2StatID$$aPeer Review unknown
000846019 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000846019 920__ $$lyes
000846019 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000846019 980__ $$ajournal
000846019 980__ $$aVDB
000846019 980__ $$aUNRESTRICTED
000846019 980__ $$aI:(DE-Juel1)IBG-2-20101118
000846019 9801_ $$aFullTexts