Journal Article FZJ-2018-03189

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Cytokinins: Their Impact on Molecular and Growth Responses to Drought Stress and Recovery in Arabidopsis

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2018
Frontiers Media88991 Lausanne

Frontiers in Functional Plant Ecology 9, 655 () [10.3389/fpls.2018.00655]

This record in other databases:      

Please use a persistent id in citations:   doi:

Abstract: Our phenotyping and hormonal study has characterized the role of cytokinins (CK) in the drought and recovery responses of Arabidopsis thaliana. CK down-regulation was achieved by overexpression of the gene for CK deactivating enzyme cytokinin oxidase/dehydrogenase (CKX): constitutive (35S:CKX) or at the stress onset using a dexamethasone-inducible pOp/LhGR promoter (DEX:CKX). The 35S:CKX plants exhibited slow ontogenesis and higher expression levels of stress-associated genes, e.g., AtP5CS1, already at well-watered conditions. CK down-regulation resulted during drought in higher stress tolerance (indicated by relatively low up-regulation of the expression of drought stress marker gene AtRD29B) accompanied with lower leaf water loss. Nevertheless, these plants exhibited slow and delayed recovery after re-watering. CK levels were increased at the stress onset by stimulation of the expression of CK biosynthetic gene isopentenyl transferase (ipt) (DEX:IPT) or by application of exogenous CK meta-topolin. After water withdrawal, long-term CK elevation resulted in higher water loss in comparison with CKX transformants as well as with plants overexpressing ipt driven by senescence-inducible SAG12 promoter (SAG:IPT), which gradually enhanced CKs during the stress progression. In all cases, CK up-regulation resulted in fast and more vigorous recovery. All drought-stressed plants exhibited growth suppression associated with elevation of abscisic acid and decrease of auxins and active CKs (with the exception of SAG:IPT plants). Apart from the ipt overexpressers, also increase of jasmonic and salicylic acid was found.

Classification:

Contributing Institute(s):
  1. Pflanzenwissenschaften (IBG-2)
Research Program(s):
  1. 582 - Plant Science (POF3-582) (POF3-582)
  2. EPPN - European Plant Phenotyping Network (284443) (284443)

Appears in the scientific report 2018
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; OpenAccess ; NCBI Molecular Biology Database
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IBG > IBG-2
Workflow collections > Public records
Publications database
Open Access

 Record created 2018-05-25, last modified 2021-01-29