Home > Workflow collections > Publication Charges > Electrical nanopatterning of TiO 2 single crystal surfaces in situ via local resistance and potential switching > print |
001 | 847981 | ||
005 | 20240711101459.0 | ||
024 | 7 | _ | |a 10.1063/1.5028424 |2 doi |
024 | 7 | _ | |a 2128/20221 |2 Handle |
024 | 7 | _ | |a WOS:000436859000007 |2 WOS |
037 | _ | _ | |a FZJ-2018-03289 |
082 | _ | _ | |a 620 |
100 | 1 | _ | |a Rodenbücher, Christian |0 P:(DE-Juel1)142194 |b 0 |e Corresponding author |u fzj |
245 | _ | _ | |a Electrical nanopatterning of TiO 2 single crystal surfaces in situ via local resistance and potential switching |
260 | _ | _ | |a Melville, NY |c 2018 |b AIP Publ. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1543483014_22946 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The resistive switching effect in transition metal oxides allows for a dedicated manipulation of the oxide resistance via electrical stimuli. Here, we perform local-conductivity atomic force microscopy simultaneously with the Kelvin probe force microscopy under ultra-high vacuum conditions using the very same tip investigating the very same sample area to monitor the surface conductivity and surface potential of thermally reduced TiO2 single crystals. We show that the resistance of confined surface areas can be switched by applying a voltage of several volts to the tip during scanning in the contact mode. By conducting in situ oxidation experiments, we present that this surface switching is related to a local redox reaction, which can be controlled electrically allowing for surface nanopatterning and illustrates the capability of transition metal oxides for multilevel resistive switching being a prerequisite for neuromorphic computing. We discuss that the features of the electrically engraved nanopattern can be scaled down to a lower boundary at several tens of nanometers. The observed limit around 25 nm is determined by the presence of intrinsic local variations in electrical surface properties appearing as a common phenomenon of slightly reduced metal oxide surfaces. |
536 | _ | _ | |a 524 - Controlling Collective States (POF3-524) |0 G:(DE-HGF)POF3-524 |c POF3-524 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Wrana, D. |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Meuffels, P. |0 P:(DE-Juel1)130836 |b 2 |u fzj |
700 | 1 | _ | |a Rogala, M. |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Krok, F. |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Szot, K. |0 P:(DE-Juel1)130993 |b 5 |u fzj |
773 | _ | _ | |a 10.1063/1.5028424 |g Vol. 6, no. 6, p. 066105 - |0 PERI:(DE-600)2722985-3 |n 6 |p 066105 - |t APL materials |v 6 |y 2018 |x 2166-532X |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/847981/files/Invoice.pdf |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/847981/files/1.5028424.pdf |
856 | 4 | _ | |x icon |u https://juser.fz-juelich.de/record/847981/files/Invoice.gif?subformat=icon |
856 | 4 | _ | |x icon-1440 |u https://juser.fz-juelich.de/record/847981/files/Invoice.jpg?subformat=icon-1440 |
856 | 4 | _ | |x icon-180 |u https://juser.fz-juelich.de/record/847981/files/Invoice.jpg?subformat=icon-180 |
856 | 4 | _ | |x icon-640 |u https://juser.fz-juelich.de/record/847981/files/Invoice.jpg?subformat=icon-640 |
856 | 4 | _ | |x pdfa |u https://juser.fz-juelich.de/record/847981/files/Invoice.pdf?subformat=pdfa |
856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/847981/files/1.5028424.gif?subformat=icon |
856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://juser.fz-juelich.de/record/847981/files/1.5028424.jpg?subformat=icon-1440 |
856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/847981/files/1.5028424.jpg?subformat=icon-180 |
856 | 4 | _ | |y OpenAccess |x icon-640 |u https://juser.fz-juelich.de/record/847981/files/1.5028424.jpg?subformat=icon-640 |
909 | C | O | |o oai:juser.fz-juelich.de:847981 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)142194 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)130836 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)130993 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-520 |0 G:(DE-HGF)POF3-524 |2 G:(DE-HGF)POF3-500 |v Controlling Collective States |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2018 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b APL MATER : 2015 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-7-20110106 |k PGI-7 |l Elektronische Materialien |x 0 |
920 | 1 | _ | |0 I:(DE-82)080009_20140620 |k JARA-FIT |l JARA-FIT |x 1 |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-3-20101013 |k IEK-3 |l Elektrochemische Verfahrenstechnik |x 2 |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)PGI-7-20110106 |
980 | _ | _ | |a I:(DE-82)080009_20140620 |
980 | _ | _ | |a I:(DE-Juel1)IEK-3-20101013 |
980 | _ | _ | |a APC |
981 | _ | _ | |a I:(DE-Juel1)ICE-2-20101013 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|