001     847981
005     20240711101459.0
024 7 _ |a 10.1063/1.5028424
|2 doi
024 7 _ |a 2128/20221
|2 Handle
024 7 _ |a WOS:000436859000007
|2 WOS
037 _ _ |a FZJ-2018-03289
082 _ _ |a 620
100 1 _ |a Rodenbücher, Christian
|0 P:(DE-Juel1)142194
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Electrical nanopatterning of TiO 2 single crystal surfaces in situ via local resistance and potential switching
260 _ _ |a Melville, NY
|c 2018
|b AIP Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1543483014_22946
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The resistive switching effect in transition metal oxides allows for a dedicated manipulation of the oxide resistance via electrical stimuli. Here, we perform local-conductivity atomic force microscopy simultaneously with the Kelvin probe force microscopy under ultra-high vacuum conditions using the very same tip investigating the very same sample area to monitor the surface conductivity and surface potential of thermally reduced TiO2 single crystals. We show that the resistance of confined surface areas can be switched by applying a voltage of several volts to the tip during scanning in the contact mode. By conducting in situ oxidation experiments, we present that this surface switching is related to a local redox reaction, which can be controlled electrically allowing for surface nanopatterning and illustrates the capability of transition metal oxides for multilevel resistive switching being a prerequisite for neuromorphic computing. We discuss that the features of the electrically engraved nanopattern can be scaled down to a lower boundary at several tens of nanometers. The observed limit around 25 nm is determined by the presence of intrinsic local variations in electrical surface properties appearing as a common phenomenon of slightly reduced metal oxide surfaces.
536 _ _ |a 524 - Controlling Collective States (POF3-524)
|0 G:(DE-HGF)POF3-524
|c POF3-524
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Wrana, D.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Meuffels, P.
|0 P:(DE-Juel1)130836
|b 2
|u fzj
700 1 _ |a Rogala, M.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Krok, F.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Szot, K.
|0 P:(DE-Juel1)130993
|b 5
|u fzj
773 _ _ |a 10.1063/1.5028424
|g Vol. 6, no. 6, p. 066105 -
|0 PERI:(DE-600)2722985-3
|n 6
|p 066105 -
|t APL materials
|v 6
|y 2018
|x 2166-532X
856 4 _ |u https://juser.fz-juelich.de/record/847981/files/Invoice.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/847981/files/1.5028424.pdf
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/847981/files/Invoice.gif?subformat=icon
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/847981/files/Invoice.jpg?subformat=icon-1440
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/847981/files/Invoice.jpg?subformat=icon-180
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/847981/files/Invoice.jpg?subformat=icon-640
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/847981/files/Invoice.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/847981/files/1.5028424.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/847981/files/1.5028424.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/847981/files/1.5028424.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/847981/files/1.5028424.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:847981
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)142194
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130836
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)130993
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-524
|2 G:(DE-HGF)POF3-500
|v Controlling Collective States
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b APL MATER : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
920 1 _ |0 I:(DE-Juel1)IEK-3-20101013
|k IEK-3
|l Elektrochemische Verfahrenstechnik
|x 2
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-Juel1)IEK-3-20101013
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)ICE-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21