000848172 001__ 848172
000848172 005__ 20210129234011.0
000848172 0247_ $$2doi$$a10.1002/adma.201800957
000848172 0247_ $$2ISSN$$a0935-9648
000848172 0247_ $$2ISSN$$a1521-4095
000848172 0247_ $$2pmid$$apmid:29882270
000848172 0247_ $$2WOS$$aWOS:000438709400015
000848172 0247_ $$2altmetric$$aaltmetric:43606292
000848172 037__ $$aFZJ-2018-03438
000848172 082__ $$a540
000848172 1001_ $$0P:(DE-Juel1)169605$$aHeisig, Thomas$$b0$$eCorresponding author
000848172 245__ $$aOxygen Exchange Processes between Oxide Memristive Devices and Water Molecules
000848172 260__ $$aWeinheim$$bWiley-VCH$$c2018
000848172 3367_ $$2DRIVER$$aarticle
000848172 3367_ $$2DataCite$$aOutput Types/Journal article
000848172 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1534505554_3615
000848172 3367_ $$2BibTeX$$aARTICLE
000848172 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000848172 3367_ $$00$$2EndNote$$aJournal Article
000848172 520__ $$aResistive switching based on transition metal oxide memristive devices is suspected to be caused by the electric‐field‐driven motion and internal redistribution of oxygen vacancies. Deriving the detailed mechanistic picture of the switching process is complicated, however, by the frequently observed influence of the surrounding atmosphere. Specifically, the presence or absence of water vapor in the atmosphere has a strong impact on the switching properties, but the redox reactions between water and the active layer have yet to be clarified. To investigate the role of oxygen and water species during resistive switching in greater detail, isotope labeling experiments in a N2/H218O tracer gas atmosphere combined with time‐of‐flight secondary‐ion mass spectrometry are used. It is explicitly demonstrated that during the RESET operation in resistive switching SrTiO3‐based memristive devices, oxygen is incorporated directly from water molecules or oxygen molecules into the active layer. In humid atmospheres, the reaction pathway via water molecules predominates. These findings clearly resolve the role of humidity as both oxidizing agent and source of protonic defects during the RESET operation.
000848172 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000848172 588__ $$aDataset connected to CrossRef
000848172 7001_ $$0P:(DE-Juel1)159254$$aBaeumer, Christoph$$b1
000848172 7001_ $$0P:(DE-HGF)0$$aGries, Ute N.$$b2
000848172 7001_ $$0P:(DE-HGF)0$$aMueller, Michael P.$$b3
000848172 7001_ $$0P:(DE-HGF)0$$aLa Torre, Camilla$$b4
000848172 7001_ $$0P:(DE-HGF)0$$aLuebben, Michael$$b5
000848172 7001_ $$0P:(DE-Juel1)157925$$aRaab, Nicolas$$b6
000848172 7001_ $$0P:(DE-Juel1)145710$$aDu, Hongchu$$b7
000848172 7001_ $$0P:(DE-Juel1)158062$$aMenzel, Stephan$$b8
000848172 7001_ $$0P:(DE-HGF)0$$aMueller, David N.$$b9
000848172 7001_ $$0P:(DE-Juel1)130736$$aJia, Chun-Lin$$b10
000848172 7001_ $$0P:(DE-Juel1)130824$$aMayer, Joachim$$b11$$ufzj
000848172 7001_ $$0P:(DE-Juel1)131022$$aWaser, R.$$b12
000848172 7001_ $$0P:(DE-Juel1)131014$$aValov, Ilia$$b13
000848172 7001_ $$0P:(DE-HGF)0$$aDe Souza, Roger A.$$b14
000848172 7001_ $$0P:(DE-Juel1)130620$$aDittmann, Regina$$b15
000848172 773__ $$0PERI:(DE-600)1474949-x$$a10.1002/adma.201800957$$gp. 1800957 -$$n29$$p1800957 -$$tAdvanced materials$$v30$$x0935-9648$$y2018
000848172 8564_ $$uhttps://juser.fz-juelich.de/record/848172/files/Heisig_et_al-2018-Advanced_Materials.pdf$$yRestricted
000848172 8564_ $$uhttps://juser.fz-juelich.de/record/848172/files/Heisig_et_al-2018-Advanced_Materials.gif?subformat=icon$$xicon$$yRestricted
000848172 8564_ $$uhttps://juser.fz-juelich.de/record/848172/files/Heisig_et_al-2018-Advanced_Materials.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000848172 8564_ $$uhttps://juser.fz-juelich.de/record/848172/files/Heisig_et_al-2018-Advanced_Materials.jpg?subformat=icon-180$$xicon-180$$yRestricted
000848172 8564_ $$uhttps://juser.fz-juelich.de/record/848172/files/Heisig_et_al-2018-Advanced_Materials.jpg?subformat=icon-640$$xicon-640$$yRestricted
000848172 8564_ $$uhttps://juser.fz-juelich.de/record/848172/files/Heisig_et_al-2018-Advanced_Materials.pdf?subformat=pdfa$$xpdfa$$yRestricted
000848172 909CO $$ooai:juser.fz-juelich.de:848172$$pVDB
000848172 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169605$$aForschungszentrum Jülich$$b0$$kFZJ
000848172 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159254$$aForschungszentrum Jülich$$b1$$kFZJ
000848172 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145710$$aForschungszentrum Jülich$$b7$$kFZJ
000848172 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158062$$aForschungszentrum Jülich$$b8$$kFZJ
000848172 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130736$$aForschungszentrum Jülich$$b10$$kFZJ
000848172 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130824$$aForschungszentrum Jülich$$b11$$kFZJ
000848172 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131022$$aForschungszentrum Jülich$$b12$$kFZJ
000848172 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131014$$aForschungszentrum Jülich$$b13$$kFZJ
000848172 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130620$$aForschungszentrum Jülich$$b15$$kFZJ
000848172 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000848172 9141_ $$y2018
000848172 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000848172 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000848172 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000848172 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV MATER : 2015
000848172 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000848172 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000848172 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000848172 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000848172 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000848172 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000848172 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000848172 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bADV MATER : 2015
000848172 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000848172 9201_ $$0I:(DE-Juel1)ER-C-2-20170209$$kER-C-2$$lMaterialwissenschaft u. Werkstofftechnik$$x1
000848172 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x2
000848172 9201_ $$0I:(DE-Juel1)PGI-6-20110106$$kPGI-6$$lElektronische Eigenschaften$$x3
000848172 980__ $$ajournal
000848172 980__ $$aVDB
000848172 980__ $$aI:(DE-Juel1)PGI-7-20110106
000848172 980__ $$aI:(DE-Juel1)ER-C-2-20170209
000848172 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000848172 980__ $$aI:(DE-Juel1)PGI-6-20110106
000848172 980__ $$aUNRESTRICTED