Hauptseite > Publikationsdatenbank > Oxygen Exchange Processes between Oxide Memristive Devices and Water Molecules > print |
001 | 848172 | ||
005 | 20210129234011.0 | ||
024 | 7 | _ | |a 10.1002/adma.201800957 |2 doi |
024 | 7 | _ | |a 0935-9648 |2 ISSN |
024 | 7 | _ | |a 1521-4095 |2 ISSN |
024 | 7 | _ | |a pmid:29882270 |2 pmid |
024 | 7 | _ | |a WOS:000438709400015 |2 WOS |
024 | 7 | _ | |a altmetric:43606292 |2 altmetric |
037 | _ | _ | |a FZJ-2018-03438 |
082 | _ | _ | |a 540 |
100 | 1 | _ | |a Heisig, Thomas |0 P:(DE-Juel1)169605 |b 0 |e Corresponding author |
245 | _ | _ | |a Oxygen Exchange Processes between Oxide Memristive Devices and Water Molecules |
260 | _ | _ | |a Weinheim |c 2018 |b Wiley-VCH |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1534505554_3615 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Resistive switching based on transition metal oxide memristive devices is suspected to be caused by the electric‐field‐driven motion and internal redistribution of oxygen vacancies. Deriving the detailed mechanistic picture of the switching process is complicated, however, by the frequently observed influence of the surrounding atmosphere. Specifically, the presence or absence of water vapor in the atmosphere has a strong impact on the switching properties, but the redox reactions between water and the active layer have yet to be clarified. To investigate the role of oxygen and water species during resistive switching in greater detail, isotope labeling experiments in a N2/H218O tracer gas atmosphere combined with time‐of‐flight secondary‐ion mass spectrometry are used. It is explicitly demonstrated that during the RESET operation in resistive switching SrTiO3‐based memristive devices, oxygen is incorporated directly from water molecules or oxygen molecules into the active layer. In humid atmospheres, the reaction pathway via water molecules predominates. These findings clearly resolve the role of humidity as both oxidizing agent and source of protonic defects during the RESET operation. |
536 | _ | _ | |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521) |0 G:(DE-HGF)POF3-521 |c POF3-521 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Baeumer, Christoph |0 P:(DE-Juel1)159254 |b 1 |
700 | 1 | _ | |a Gries, Ute N. |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Mueller, Michael P. |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a La Torre, Camilla |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Luebben, Michael |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Raab, Nicolas |0 P:(DE-Juel1)157925 |b 6 |
700 | 1 | _ | |a Du, Hongchu |0 P:(DE-Juel1)145710 |b 7 |
700 | 1 | _ | |a Menzel, Stephan |0 P:(DE-Juel1)158062 |b 8 |
700 | 1 | _ | |a Mueller, David N. |0 P:(DE-HGF)0 |b 9 |
700 | 1 | _ | |a Jia, Chun-Lin |0 P:(DE-Juel1)130736 |b 10 |
700 | 1 | _ | |a Mayer, Joachim |0 P:(DE-Juel1)130824 |b 11 |u fzj |
700 | 1 | _ | |a Waser, R. |0 P:(DE-Juel1)131022 |b 12 |
700 | 1 | _ | |a Valov, Ilia |0 P:(DE-Juel1)131014 |b 13 |
700 | 1 | _ | |a De Souza, Roger A. |0 P:(DE-HGF)0 |b 14 |
700 | 1 | _ | |a Dittmann, Regina |0 P:(DE-Juel1)130620 |b 15 |
773 | _ | _ | |a 10.1002/adma.201800957 |g p. 1800957 - |0 PERI:(DE-600)1474949-x |n 29 |p 1800957 - |t Advanced materials |v 30 |y 2018 |x 0935-9648 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/848172/files/Heisig_et_al-2018-Advanced_Materials.pdf |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/848172/files/Heisig_et_al-2018-Advanced_Materials.gif?subformat=icon |x icon |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/848172/files/Heisig_et_al-2018-Advanced_Materials.jpg?subformat=icon-1440 |x icon-1440 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/848172/files/Heisig_et_al-2018-Advanced_Materials.jpg?subformat=icon-180 |x icon-180 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/848172/files/Heisig_et_al-2018-Advanced_Materials.jpg?subformat=icon-640 |x icon-640 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/848172/files/Heisig_et_al-2018-Advanced_Materials.pdf?subformat=pdfa |x pdfa |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:848172 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)169605 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)159254 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)145710 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)158062 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 10 |6 P:(DE-Juel1)130736 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 11 |6 P:(DE-Juel1)130824 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 12 |6 P:(DE-Juel1)131022 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 13 |6 P:(DE-Juel1)131014 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 15 |6 P:(DE-Juel1)130620 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-520 |0 G:(DE-HGF)POF3-521 |2 G:(DE-HGF)POF3-500 |v Controlling Electron Charge-Based Phenomena |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2018 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ADV MATER : 2015 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |
915 | _ | _ | |a IF >= 15 |0 StatID:(DE-HGF)9915 |2 StatID |b ADV MATER : 2015 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-7-20110106 |k PGI-7 |l Elektronische Materialien |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)ER-C-2-20170209 |k ER-C-2 |l Materialwissenschaft u. Werkstofftechnik |x 1 |
920 | 1 | _ | |0 I:(DE-Juel1)ER-C-1-20170209 |k ER-C-1 |l Physik Nanoskaliger Systeme |x 2 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-6-20110106 |k PGI-6 |l Elektronische Eigenschaften |x 3 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)PGI-7-20110106 |
980 | _ | _ | |a I:(DE-Juel1)ER-C-2-20170209 |
980 | _ | _ | |a I:(DE-Juel1)ER-C-1-20170209 |
980 | _ | _ | |a I:(DE-Juel1)PGI-6-20110106 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|