001     848172
005     20210129234011.0
024 7 _ |a 10.1002/adma.201800957
|2 doi
024 7 _ |a 0935-9648
|2 ISSN
024 7 _ |a 1521-4095
|2 ISSN
024 7 _ |a pmid:29882270
|2 pmid
024 7 _ |a WOS:000438709400015
|2 WOS
024 7 _ |a altmetric:43606292
|2 altmetric
037 _ _ |a FZJ-2018-03438
082 _ _ |a 540
100 1 _ |a Heisig, Thomas
|0 P:(DE-Juel1)169605
|b 0
|e Corresponding author
245 _ _ |a Oxygen Exchange Processes between Oxide Memristive Devices and Water Molecules
260 _ _ |a Weinheim
|c 2018
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1534505554_3615
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Resistive switching based on transition metal oxide memristive devices is suspected to be caused by the electric‐field‐driven motion and internal redistribution of oxygen vacancies. Deriving the detailed mechanistic picture of the switching process is complicated, however, by the frequently observed influence of the surrounding atmosphere. Specifically, the presence or absence of water vapor in the atmosphere has a strong impact on the switching properties, but the redox reactions between water and the active layer have yet to be clarified. To investigate the role of oxygen and water species during resistive switching in greater detail, isotope labeling experiments in a N2/H218O tracer gas atmosphere combined with time‐of‐flight secondary‐ion mass spectrometry are used. It is explicitly demonstrated that during the RESET operation in resistive switching SrTiO3‐based memristive devices, oxygen is incorporated directly from water molecules or oxygen molecules into the active layer. In humid atmospheres, the reaction pathway via water molecules predominates. These findings clearly resolve the role of humidity as both oxidizing agent and source of protonic defects during the RESET operation.
536 _ _ |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|0 G:(DE-HGF)POF3-521
|c POF3-521
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Baeumer, Christoph
|0 P:(DE-Juel1)159254
|b 1
700 1 _ |a Gries, Ute N.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Mueller, Michael P.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a La Torre, Camilla
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Luebben, Michael
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Raab, Nicolas
|0 P:(DE-Juel1)157925
|b 6
700 1 _ |a Du, Hongchu
|0 P:(DE-Juel1)145710
|b 7
700 1 _ |a Menzel, Stephan
|0 P:(DE-Juel1)158062
|b 8
700 1 _ |a Mueller, David N.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Jia, Chun-Lin
|0 P:(DE-Juel1)130736
|b 10
700 1 _ |a Mayer, Joachim
|0 P:(DE-Juel1)130824
|b 11
|u fzj
700 1 _ |a Waser, R.
|0 P:(DE-Juel1)131022
|b 12
700 1 _ |a Valov, Ilia
|0 P:(DE-Juel1)131014
|b 13
700 1 _ |a De Souza, Roger A.
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Dittmann, Regina
|0 P:(DE-Juel1)130620
|b 15
773 _ _ |a 10.1002/adma.201800957
|g p. 1800957 -
|0 PERI:(DE-600)1474949-x
|n 29
|p 1800957 -
|t Advanced materials
|v 30
|y 2018
|x 0935-9648
856 4 _ |u https://juser.fz-juelich.de/record/848172/files/Heisig_et_al-2018-Advanced_Materials.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/848172/files/Heisig_et_al-2018-Advanced_Materials.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/848172/files/Heisig_et_al-2018-Advanced_Materials.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/848172/files/Heisig_et_al-2018-Advanced_Materials.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/848172/files/Heisig_et_al-2018-Advanced_Materials.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/848172/files/Heisig_et_al-2018-Advanced_Materials.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:848172
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)169605
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)159254
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)145710
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)158062
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)130736
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)130824
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)131022
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-Juel1)131014
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 15
|6 P:(DE-Juel1)130620
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|2 G:(DE-HGF)POF3-500
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV MATER : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b ADV MATER : 2015
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)ER-C-2-20170209
|k ER-C-2
|l Materialwissenschaft u. Werkstofftechnik
|x 1
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 2
920 1 _ |0 I:(DE-Juel1)PGI-6-20110106
|k PGI-6
|l Elektronische Eigenschaften
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-Juel1)ER-C-2-20170209
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 _ _ |a I:(DE-Juel1)PGI-6-20110106
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21