Journal Article FZJ-2018-03624

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Electrochemical analysis and mixed potentials theory of ionic liquid based Metal–Air batteries with Al/Si alloy anodes

 ;  ;  ;  ;  ;  ;

2018
Elsevier New York, NY [u.a.]

Electrochimica acta 276, 399 - 411 () [10.1016/j.electacta.2018.04.176]

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: Aluminium and silicon, when coupled with an air cathode in an electrochemical cell may provide theoretical specific energies of up to 8146 mWh/g and 8470 mWh/g. Proof of concept for the discharge in cells with ionic liquid EMIm(HF)2.3F electrolyte had been established in 2009 for silicon and in 2015 for aluminium. The objective of the present work is the investigation of discharge behavior and corrosion in this type of cell using binary Al/Si alloys as anodes. Al/Si alloys with nine different compositions were prepared by an arc melting process and shaped to anodes. Microstructure of the anodes in the initial state was evaluated with respect to the fractions of its constituents. Al/Si–air primary full cells were investigated with respect to voltages during OCV and discharge during intermediate term (20 h) runs under current densities of 250 μA/cm2. Voltages decrease with Si-content in the alloys following trends with quantitatively different characteristics for the hypoeutectic, intermediate hypereutectic and the alloys with high Si content. SEM analysis of surface morphology of the anodes after discharge experiments indicates that for all alloys the discharge capacity results mostly from the oxidation of the aluminium. Potentiodynamic polarization measurements were conducted in order to determine corrosion potentials for the alloys and analyzed with approaches based on mixed potential theory including galvanic coupling. The results are discussed in terms of Evans diagrams; thereby approaches based on alternative scenarios for the galvanic coupling are examined.

Classification:

Contributing Institute(s):
  1. Grundlagen der Elektrochemie (IEK-9)
Research Program(s):
  1. 131 - Electrochemical Storage (POF3-131) (POF3-131)
  2. HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406) (HITEC-20170406)

Appears in the scientific report 2018
Database coverage:
Medline ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; IF < 5 ; JCR ; NCBI Molecular Biology Database ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Institutssammlungen > IET > IET-1
Workflowsammlungen > Öffentliche Einträge
IEK > IEK-9
Publikationsdatenbank

 Datensatz erzeugt am 2018-06-20, letzte Änderung am 2024-07-12


Restricted:
Volltext herunterladen PDF
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)