Home > Publications database > In vivo Molecular Imaging of Glutamate Carboxypeptidase II Expression in Re-endothelialisation after Percutaneous Balloon Denudation in a Rat Model > print |
001 | 848432 | ||
005 | 20210129234130.0 | ||
024 | 7 | _ | |a 10.1038/s41598-018-25863-1 |2 doi |
024 | 7 | _ | |a 2128/19180 |2 Handle |
024 | 7 | _ | |a pmid:29743623 |2 pmid |
024 | 7 | _ | |a WOS:000431737300097 |2 WOS |
024 | 7 | _ | |a altmetric:41349300 |2 altmetric |
037 | _ | _ | |a FZJ-2018-03667 |
082 | _ | _ | |a 000 |
100 | 1 | _ | |a Endepols, Heike |0 0000-0002-6166-4818 |b 0 |
245 | _ | _ | |a In vivo Molecular Imaging of Glutamate Carboxypeptidase II Expression in Re-endothelialisation after Percutaneous Balloon Denudation in a Rat Model |
260 | _ | _ | |a London |c 2018 |b Nature Publishing Group |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1530269748_14343 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The short- and long-term success of intravascular stents depends on a proper re-endothelialisation afterthe intervention-induced endothelial denudation. The aim of this study was to evaluate the potentialof in vivo molecular imaging of glutamate carboxypeptidase II (GCPII; identical with prostate-specificmembrane antigen PSMA) expression as a marker of re-endothelialisation. Fifteen Sprague Dawleyrats underwent unilateral balloon angioplasty of the common carotid artery (CCA). Positron emissiontomography (PET) using the GCPII-targeting tracer [18F]DCFPyL was performed after 5–21 days (scan 60–120 min post injection). In two animals, the GCPII inhibitor PMPA (23 mg/kg BW) was added to the tracersolution. After PET, both CCAs were removed, dissected, and immunostained with the GCPII specificantibody YPSMA-1. Difference of GCPII expression between both CCAs was established by PCR analysis.[18F]DCFPyL uptake was significantly higher in the ipsilateral compared to the contralateral CCA with anipsi-/contralateral ratio of 1.67 ± 0.39. PMPA blocked tracer binding. The selective expression of GCPII inendothelial cells of the treated CCA was confirmed by immunohistological staining. PCR analysis verifiedthe site-specific GCPII expression. By using a molecular imaging marker of GCPII expression, we providethe first non-invasive in vivo delineation of re-endothelialisation after angioplasty. |
536 | _ | _ | |a 572 - (Dys-)function and Plasticity (POF3-572) |0 G:(DE-HGF)POF3-572 |c POF3-572 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Mottaghy, Felix M. |0 P:(DE-Juel1)132318 |b 1 |e Corresponding author |
700 | 1 | _ | |a Simsekyilmaz, Sakine |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Bucerius, Jan |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Vogt, Felix |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Winz, Oliver |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Richarz, Raphael |0 P:(DE-Juel1)169321 |b 6 |
700 | 1 | _ | |a Krapf, Philipp |0 P:(DE-Juel1)169356 |b 7 |u fzj |
700 | 1 | _ | |a Neumaier, Bernd |0 P:(DE-Juel1)166419 |b 8 |
700 | 1 | _ | |a Zlatopolskiy, Boris D. |0 P:(DE-HGF)0 |b 9 |
700 | 1 | _ | |a Morgenroth, Agnieszka |0 P:(DE-HGF)0 |b 10 |
773 | _ | _ | |a 10.1038/s41598-018-25863-1 |g Vol. 8, no. 1, p. 7411 |0 PERI:(DE-600)2615211-3 |n 1 |p 7411 |t Scientific reports |v 8 |y 2018 |x 2045-2322 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/848432/files/Endepols%2C%20H.ab_In-vivo-Molecular-Imaging-of-Glutamate-Carboxypeptidase-II-Expression-in-Reendothelialisation-after-Percutaneous-Balloon-Denudation-in-a-Rat-ModelArticle_2018.pdf |
856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/848432/files/Endepols%2C%20H.ab_In-vivo-Molecular-Imaging-of-Glutamate-Carboxypeptidase-II-Expression-in-Reendothelialisation-after-Percutaneous-Balloon-Denudation-in-a-Rat-ModelArticle_2018.gif?subformat=icon |
856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://juser.fz-juelich.de/record/848432/files/Endepols%2C%20H.ab_In-vivo-Molecular-Imaging-of-Glutamate-Carboxypeptidase-II-Expression-in-Reendothelialisation-after-Percutaneous-Balloon-Denudation-in-a-Rat-ModelArticle_2018.jpg?subformat=icon-1440 |
856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/848432/files/Endepols%2C%20H.ab_In-vivo-Molecular-Imaging-of-Glutamate-Carboxypeptidase-II-Expression-in-Reendothelialisation-after-Percutaneous-Balloon-Denudation-in-a-Rat-ModelArticle_2018.jpg?subformat=icon-180 |
856 | 4 | _ | |y OpenAccess |x icon-640 |u https://juser.fz-juelich.de/record/848432/files/Endepols%2C%20H.ab_In-vivo-Molecular-Imaging-of-Glutamate-Carboxypeptidase-II-Expression-in-Reendothelialisation-after-Percutaneous-Balloon-Denudation-in-a-Rat-ModelArticle_2018.jpg?subformat=icon-640 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/848432/files/Endepols%2C%20H.ab_In-vivo-Molecular-Imaging-of-Glutamate-Carboxypeptidase-II-Expression-in-Reendothelialisation-after-Percutaneous-Balloon-Denudation-in-a-Rat-ModelArticle_2018.pdf?subformat=pdfa |x pdfa |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/848432/files/Endepols.pdf |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/848432/files/Endepols.pdf?subformat=pdfa |x pdfa |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:848432 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)132318 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)169356 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)166419 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Decoding the Human Brain |1 G:(DE-HGF)POF3-570 |0 G:(DE-HGF)POF3-572 |2 G:(DE-HGF)POF3-500 |v (Dys-)function and Plasticity |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2018 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b SCI REP-UK : 2015 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b SCI REP-UK : 2015 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)INM-5-20090406 |k INM-5 |l Nuklearchemie |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)INM-5-20090406 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|