001     849552
005     20240610121316.0
024 7 _ |a 10.1103/PhysRevB.97.115433
|2 doi
024 7 _ |a 0163-1829
|2 ISSN
024 7 _ |a 0556-2805
|2 ISSN
024 7 _ |a 1094-1622
|2 ISSN
024 7 _ |a 1095-3795
|2 ISSN
024 7 _ |a 1098-0121
|2 ISSN
024 7 _ |a 1550-235X
|2 ISSN
024 7 _ |a 2469-9950
|2 ISSN
024 7 _ |a 2469-9969
|2 ISSN
024 7 _ |a 2128/19115
|2 Handle
024 7 _ |a WOS:000427816300004
|2 WOS
037 _ _ |a FZJ-2018-03735
082 _ _ |a 530
100 1 _ |a Portz, V.
|0 P:(DE-Juel1)145975
|b 0
245 _ _ |a Electron affinity and surface states of GaN m -plane facets: Implication for electronic self-passivation
260 _ _ |a Woodbury, NY
|c 2018
|b Inst.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1529935489_21480
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The electron affinity and surface states are of utmost importance for designing the potential landscape within (heterojunction) nanowires and hence for tuning conductivity and carrier lifetimes. Therefore, we determined for stoichiometric nonpolar GaN(10¯10) m-plane facets, i.e., the dominating sidewalls of GaN nanowires, the electron affinity to 4.06±0.07eV and the energy of the empty Ga-derived surface state in the band gap to 0.99±0.08eV below the conduction band minimum using scanning tunneling spectroscopy. These values imply that the potential landscape within GaN nanowires is defined by a surface state-induced Fermi-level pinning, creating an upward band bending at the sidewall facets, which provides an electronic passivation.
536 _ _ |a 141 - Controlling Electron Charge-Based Phenomena (POF3-141)
|0 G:(DE-HGF)POF3-141
|c POF3-141
|f POF III
|x 0
542 _ _ |i 2018-03-20
|2 Crossref
|u https://link.aps.org/licenses/aps-default-license
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Schnedler, M.
|0 P:(DE-Juel1)143949
|b 1
700 1 _ |a Eisele, H.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Dunin-Borkowski, Rafal
|0 P:(DE-Juel1)144121
|b 3
700 1 _ |a Ebert, Ph.
|0 P:(DE-Juel1)130627
|b 4
|e Corresponding author
773 1 8 |a 10.1103/physrevb.97.115433
|b American Physical Society (APS)
|d 2018-03-20
|n 11
|p 115433
|3 journal-article
|2 Crossref
|t Physical Review B
|v 97
|y 2018
|x 2469-9950
773 _ _ |a 10.1103/PhysRevB.97.115433
|g Vol. 97, no. 11, p. 115433
|0 PERI:(DE-600)2844160-6
|n 11
|p 115433
|t Physical review / B
|v 97
|y 2018
|x 2469-9950
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/849552/files/PhysRevB.97.115433.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/849552/files/PhysRevB.97.115433.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/849552/files/PhysRevB.97.115433.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/849552/files/PhysRevB.97.115433.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/849552/files/PhysRevB.97.115433.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:849552
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)145975
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)143949
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)144121
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130627
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-141
|2 G:(DE-HGF)POF3-100
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV B : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-5-20110106
|k PGI-5
|l Mikrostrukturforschung
|x 0
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-5-20110106
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
981 _ _ |a I:(DE-Juel1)ER-C-1-20170209
999 C 5 |a 10.1016/j.jcrysgro.2006.10.209
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0957-4484/19/15/155704
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/nl0500306
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/nl201179n
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.4821293
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/S0080-8784(08)60285-9
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/S0080-8784(08)60286-0
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.1655276
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.360917
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.362924
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1116/1.590151
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.367182
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.1367275
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.1596369
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1143/APEX.5.031003
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.110417
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/BF02666644
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.1456544
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.3548872
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1039/C5MH00160A
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.79.3934
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.53.R10477
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/(SICI)1521-3951(199909)215:1%3C751::AID-PSSB751%3E3.0.CO;2-G
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1209/epl/i2006-10250-2
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.2722731
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.3026743
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.80.115324
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.4823723
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.4873376
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.91.035302
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.91.205309
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0039-6028(86)90243-8
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1116/1.3498739
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.58.1192
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/pssb.200983691
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.90.155405
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.91.235305
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.93.195444
|9 -- missing cx lookup --
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21