000849678 001__ 849678
000849678 005__ 20210129234223.0
000849678 0247_ $$2doi$$a10.1021/acsphotonics.5b00372
000849678 0247_ $$2WOS$$aWOS:000365148400005
000849678 0247_ $$2altmetric$$aaltmetric:4643356
000849678 037__ $$aFZJ-2018-03814
000849678 082__ $$a620
000849678 1001_ $$0P:(DE-Juel1)161180$$aStange, D.$$b0
000849678 245__ $$aOptical Transitions in Direct-Bandgap Ge 1– x Sn x Alloys
000849678 260__ $$aWashington, DC$$bACS$$c2015
000849678 3367_ $$2DRIVER$$aarticle
000849678 3367_ $$2DataCite$$aOutput Types/Journal article
000849678 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1531922331_27642
000849678 3367_ $$2BibTeX$$aARTICLE
000849678 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000849678 3367_ $$00$$2EndNote$$aJournal Article
000849678 520__ $$aA comprehensive study of optical transitions in direct-bandgap Ge0.875Sn0.125 group IV alloys via photoluminescence measurements as a function of temperature, compressive strain and excitation power is performed. The analysis of the integrated emission intensities reveals a strain-dependent indirect-to-direct bandgap transition, in good agreement with band structure calculations based on the 8-band k·p and deformation potential methods. We have observed and quantified Γ valley–heavy hole and Γ valley–light hole transitions at low pumping power and low temperatures in order to verify the splitting of the valence band due to strain. We will demonstrate that the intensity evolution of these transitions supports the conclusion about the fundamental direct bandgap in compressively strained GeSn alloys. The presented investigation, thus, demonstrates that direct-bandgap group IV alloys can be directly grown on Ge-buffered Si(001) substrates despite their residual compressive strain.
000849678 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000849678 588__ $$aDataset connected to CrossRef
000849678 7001_ $$0P:(DE-HGF)0$$aWirths, S.$$b1
000849678 7001_ $$0P:(DE-Juel1)161247$$avon den Driesch, N.$$b2
000849678 7001_ $$0P:(DE-Juel1)128617$$aMussler, G.$$b3
000849678 7001_ $$0P:(DE-HGF)0$$aStoica, T.$$b4
000849678 7001_ $$0P:(DE-HGF)0$$aIkonic, Z.$$b5
000849678 7001_ $$0P:(DE-HGF)0$$aHartmann, J. M.$$b6
000849678 7001_ $$0P:(DE-Juel1)128609$$aMantl, S.$$b7
000849678 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, D.$$b8$$eCorresponding author
000849678 7001_ $$0P:(DE-Juel1)125569$$aBuca, Dan Mihai$$b9$$eCorresponding author
000849678 773__ $$0PERI:(DE-600)2745489-7$$a10.1021/acsphotonics.5b00372$$gVol. 2, no. 11, p. 1539 - 1545$$n11$$p1539 - 1545$$tACS photonics$$v2$$x2330-4022$$y2015
000849678 8564_ $$uhttps://juser.fz-juelich.de/record/849678/files/acsphotonics.5b00372.pdf$$yRestricted
000849678 8564_ $$uhttps://juser.fz-juelich.de/record/849678/files/acsphotonics.5b00372.gif?subformat=icon$$xicon$$yRestricted
000849678 8564_ $$uhttps://juser.fz-juelich.de/record/849678/files/acsphotonics.5b00372.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000849678 8564_ $$uhttps://juser.fz-juelich.de/record/849678/files/acsphotonics.5b00372.jpg?subformat=icon-180$$xicon-180$$yRestricted
000849678 8564_ $$uhttps://juser.fz-juelich.de/record/849678/files/acsphotonics.5b00372.jpg?subformat=icon-640$$xicon-640$$yRestricted
000849678 909CO $$ooai:juser.fz-juelich.de:849678$$pVDB
000849678 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161180$$aForschungszentrum Jülich$$b0$$kFZJ
000849678 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b1$$kFZJ
000849678 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161247$$aForschungszentrum Jülich$$b2$$kFZJ
000849678 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128617$$aForschungszentrum Jülich$$b3$$kFZJ
000849678 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128609$$aForschungszentrum Jülich$$b7$$kFZJ
000849678 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich$$b8$$kFZJ
000849678 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125569$$aForschungszentrum Jülich$$b9$$kFZJ
000849678 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000849678 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS PHOTONICS : 2015
000849678 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000849678 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000849678 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000849678 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000849678 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000849678 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000849678 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000849678 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACS PHOTONICS : 2015
000849678 920__ $$lyes
000849678 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000849678 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000849678 980__ $$ajournal
000849678 980__ $$aVDB
000849678 980__ $$aI:(DE-Juel1)PGI-9-20110106
000849678 980__ $$aI:(DE-82)080009_20140620
000849678 980__ $$aUNRESTRICTED