001     849678
005     20210129234223.0
024 7 _ |a 10.1021/acsphotonics.5b00372
|2 doi
024 7 _ |a WOS:000365148400005
|2 WOS
024 7 _ |a altmetric:4643356
|2 altmetric
037 _ _ |a FZJ-2018-03814
082 _ _ |a 620
100 1 _ |a Stange, D.
|0 P:(DE-Juel1)161180
|b 0
245 _ _ |a Optical Transitions in Direct-Bandgap Ge 1– x Sn x Alloys
260 _ _ |a Washington, DC
|c 2015
|b ACS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1531922331_27642
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A comprehensive study of optical transitions in direct-bandgap Ge0.875Sn0.125 group IV alloys via photoluminescence measurements as a function of temperature, compressive strain and excitation power is performed. The analysis of the integrated emission intensities reveals a strain-dependent indirect-to-direct bandgap transition, in good agreement with band structure calculations based on the 8-band k·p and deformation potential methods. We have observed and quantified Γ valley–heavy hole and Γ valley–light hole transitions at low pumping power and low temperatures in order to verify the splitting of the valence band due to strain. We will demonstrate that the intensity evolution of these transitions supports the conclusion about the fundamental direct bandgap in compressively strained GeSn alloys. The presented investigation, thus, demonstrates that direct-bandgap group IV alloys can be directly grown on Ge-buffered Si(001) substrates despite their residual compressive strain.
536 _ _ |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|0 G:(DE-HGF)POF3-521
|c POF3-521
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Wirths, S.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a von den Driesch, N.
|0 P:(DE-Juel1)161247
|b 2
700 1 _ |a Mussler, G.
|0 P:(DE-Juel1)128617
|b 3
700 1 _ |a Stoica, T.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Ikonic, Z.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Hartmann, J. M.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Mantl, S.
|0 P:(DE-Juel1)128609
|b 7
700 1 _ |a Grützmacher, D.
|0 P:(DE-Juel1)125588
|b 8
|e Corresponding author
700 1 _ |a Buca, Dan Mihai
|0 P:(DE-Juel1)125569
|b 9
|e Corresponding author
773 _ _ |a 10.1021/acsphotonics.5b00372
|g Vol. 2, no. 11, p. 1539 - 1545
|0 PERI:(DE-600)2745489-7
|n 11
|p 1539 - 1545
|t ACS photonics
|v 2
|y 2015
|x 2330-4022
856 4 _ |u https://juser.fz-juelich.de/record/849678/files/acsphotonics.5b00372.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/849678/files/acsphotonics.5b00372.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/849678/files/acsphotonics.5b00372.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/849678/files/acsphotonics.5b00372.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/849678/files/acsphotonics.5b00372.jpg?subformat=icon-640
|x icon-640
|y Restricted
909 C O |o oai:juser.fz-juelich.de:849678
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)161180
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)161247
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)128617
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)128609
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)125588
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)125569
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|2 G:(DE-HGF)POF3-500
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS PHOTONICS : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ACS PHOTONICS : 2015
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21