000849685 001__ 849685
000849685 005__ 20210129234227.0
000849685 0247_ $$2doi$$a10.1021/acs.nanolett.6b04627
000849685 0247_ $$2ISSN$$a1530-6984
000849685 0247_ $$2ISSN$$a1530-6992
000849685 0247_ $$2pmid$$apmid:28165747
000849685 0247_ $$2WOS$$aWOS:000396185800031
000849685 0247_ $$2altmetric$$aaltmetric:19990322
000849685 037__ $$aFZJ-2018-03821
000849685 082__ $$a540
000849685 1001_ $$0P:(DE-HGF)0$$aAssali, S.$$b0$$eCorresponding author
000849685 245__ $$aGrowth and Optical Properties of Direct Band Gap Ge/Ge 0.87 Sn 0.13 Core/Shell Nanowire Arrays
000849685 260__ $$aWashington, DC$$bACS Publ.$$c2017
000849685 3367_ $$2DRIVER$$aarticle
000849685 3367_ $$2DataCite$$aOutput Types/Journal article
000849685 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1531985133_27642
000849685 3367_ $$2BibTeX$$aARTICLE
000849685 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000849685 3367_ $$00$$2EndNote$$aJournal Article
000849685 520__ $$aGroup IV semiconductor optoelectronic devices are now possible by using strain-free direct band gap GeSn alloys grown on a Ge/Si virtual substrate with Sn contents above 9%. Here, we demonstrate the growth of Ge/GeSn core/shell nanowire arrays with Sn incorporation up to 13% and without the formation of Sn clusters. The nanowire geometry promotes strain relaxation in the Ge0.87Sn0.13 shell and limits the formation of structural defects. This results in room-temperature photoluminescence centered at 0.465 eV and enhanced absorption above 98%. Therefore, direct band gap GeSn grown in a nanowire geometry holds promise as a low-cost and high-efficiency material for photodetectors operating in the short-wave infrared and thermal imaging devices.
000849685 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000849685 588__ $$aDataset connected to CrossRef
000849685 7001_ $$0P:(DE-HGF)0$$aDijkstra, A.$$b1
000849685 7001_ $$0P:(DE-HGF)0$$aLi, A.$$b2
000849685 7001_ $$0P:(DE-HGF)0$$aKoelling, S.$$b3
000849685 7001_ $$0P:(DE-HGF)0$$aVerheijen, M. A.$$b4
000849685 7001_ $$0P:(DE-HGF)0$$aGagliano, L.$$b5
000849685 7001_ $$0P:(DE-Juel1)161247$$avon den Driesch, N.$$b6
000849685 7001_ $$0P:(DE-Juel1)125569$$aBuca, D.$$b7$$ufzj
000849685 7001_ $$0P:(DE-HGF)0$$aKoenraad, P. M.$$b8
000849685 7001_ $$0P:(DE-HGF)0$$aHaverkort, J. E. M.$$b9
000849685 7001_ $$0P:(DE-HGF)0$$aBakkers, E. P. A. M.$$b10
000849685 773__ $$0PERI:(DE-600)2048866-X$$a10.1021/acs.nanolett.6b04627$$gVol. 17, no. 3, p. 1538 - 1544$$n3$$p1538 - 1544$$tNano letters$$v17$$x1530-6992$$y2017
000849685 8564_ $$uhttps://juser.fz-juelich.de/record/849685/files/acs.nanolett.6b04627.pdf$$yRestricted
000849685 8564_ $$uhttps://juser.fz-juelich.de/record/849685/files/acs.nanolett.6b04627.gif?subformat=icon$$xicon$$yRestricted
000849685 8564_ $$uhttps://juser.fz-juelich.de/record/849685/files/acs.nanolett.6b04627.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000849685 8564_ $$uhttps://juser.fz-juelich.de/record/849685/files/acs.nanolett.6b04627.jpg?subformat=icon-180$$xicon-180$$yRestricted
000849685 8564_ $$uhttps://juser.fz-juelich.de/record/849685/files/acs.nanolett.6b04627.jpg?subformat=icon-640$$xicon-640$$yRestricted
000849685 909CO $$ooai:juser.fz-juelich.de:849685$$pVDB
000849685 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161247$$aForschungszentrum Jülich$$b6$$kFZJ
000849685 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125569$$aForschungszentrum Jülich$$b7$$kFZJ
000849685 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000849685 9141_ $$y2018
000849685 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000849685 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000849685 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000849685 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANO LETT : 2015
000849685 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000849685 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000849685 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000849685 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000849685 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000849685 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000849685 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000849685 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNANO LETT : 2015
000849685 920__ $$lyes
000849685 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000849685 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000849685 980__ $$ajournal
000849685 980__ $$aVDB
000849685 980__ $$aI:(DE-Juel1)PGI-9-20110106
000849685 980__ $$aI:(DE-82)080009_20140620
000849685 980__ $$aUNRESTRICTED