001     849685
005     20210129234227.0
024 7 _ |a 10.1021/acs.nanolett.6b04627
|2 doi
024 7 _ |a 1530-6984
|2 ISSN
024 7 _ |a 1530-6992
|2 ISSN
024 7 _ |a pmid:28165747
|2 pmid
024 7 _ |a WOS:000396185800031
|2 WOS
024 7 _ |a altmetric:19990322
|2 altmetric
037 _ _ |a FZJ-2018-03821
082 _ _ |a 540
100 1 _ |a Assali, S.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Growth and Optical Properties of Direct Band Gap Ge/Ge 0.87 Sn 0.13 Core/Shell Nanowire Arrays
260 _ _ |a Washington, DC
|c 2017
|b ACS Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1531985133_27642
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Group IV semiconductor optoelectronic devices are now possible by using strain-free direct band gap GeSn alloys grown on a Ge/Si virtual substrate with Sn contents above 9%. Here, we demonstrate the growth of Ge/GeSn core/shell nanowire arrays with Sn incorporation up to 13% and without the formation of Sn clusters. The nanowire geometry promotes strain relaxation in the Ge0.87Sn0.13 shell and limits the formation of structural defects. This results in room-temperature photoluminescence centered at 0.465 eV and enhanced absorption above 98%. Therefore, direct band gap GeSn grown in a nanowire geometry holds promise as a low-cost and high-efficiency material for photodetectors operating in the short-wave infrared and thermal imaging devices.
536 _ _ |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|0 G:(DE-HGF)POF3-521
|c POF3-521
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Dijkstra, A.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Li, A.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Koelling, S.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Verheijen, M. A.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Gagliano, L.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a von den Driesch, N.
|0 P:(DE-Juel1)161247
|b 6
700 1 _ |a Buca, D.
|0 P:(DE-Juel1)125569
|b 7
|u fzj
700 1 _ |a Koenraad, P. M.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Haverkort, J. E. M.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Bakkers, E. P. A. M.
|0 P:(DE-HGF)0
|b 10
773 _ _ |a 10.1021/acs.nanolett.6b04627
|g Vol. 17, no. 3, p. 1538 - 1544
|0 PERI:(DE-600)2048866-X
|n 3
|p 1538 - 1544
|t Nano letters
|v 17
|y 2017
|x 1530-6992
856 4 _ |u https://juser.fz-juelich.de/record/849685/files/acs.nanolett.6b04627.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/849685/files/acs.nanolett.6b04627.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/849685/files/acs.nanolett.6b04627.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/849685/files/acs.nanolett.6b04627.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/849685/files/acs.nanolett.6b04627.jpg?subformat=icon-640
|x icon-640
|y Restricted
909 C O |o oai:juser.fz-juelich.de:849685
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)161247
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)125569
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|2 G:(DE-HGF)POF3-500
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NANO LETT : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b NANO LETT : 2015
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21