Home > Publications database > Growth and Optical Properties of Direct Band Gap Ge/Ge 0.87 Sn 0.13 Core/Shell Nanowire Arrays > print |
001 | 849685 | ||
005 | 20210129234227.0 | ||
024 | 7 | _ | |a 10.1021/acs.nanolett.6b04627 |2 doi |
024 | 7 | _ | |a 1530-6984 |2 ISSN |
024 | 7 | _ | |a 1530-6992 |2 ISSN |
024 | 7 | _ | |a pmid:28165747 |2 pmid |
024 | 7 | _ | |a WOS:000396185800031 |2 WOS |
024 | 7 | _ | |a altmetric:19990322 |2 altmetric |
037 | _ | _ | |a FZJ-2018-03821 |
082 | _ | _ | |a 540 |
100 | 1 | _ | |a Assali, S. |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
245 | _ | _ | |a Growth and Optical Properties of Direct Band Gap Ge/Ge 0.87 Sn 0.13 Core/Shell Nanowire Arrays |
260 | _ | _ | |a Washington, DC |c 2017 |b ACS Publ. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1531985133_27642 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Group IV semiconductor optoelectronic devices are now possible by using strain-free direct band gap GeSn alloys grown on a Ge/Si virtual substrate with Sn contents above 9%. Here, we demonstrate the growth of Ge/GeSn core/shell nanowire arrays with Sn incorporation up to 13% and without the formation of Sn clusters. The nanowire geometry promotes strain relaxation in the Ge0.87Sn0.13 shell and limits the formation of structural defects. This results in room-temperature photoluminescence centered at 0.465 eV and enhanced absorption above 98%. Therefore, direct band gap GeSn grown in a nanowire geometry holds promise as a low-cost and high-efficiency material for photodetectors operating in the short-wave infrared and thermal imaging devices. |
536 | _ | _ | |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521) |0 G:(DE-HGF)POF3-521 |c POF3-521 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Dijkstra, A. |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Li, A. |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Koelling, S. |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Verheijen, M. A. |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Gagliano, L. |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a von den Driesch, N. |0 P:(DE-Juel1)161247 |b 6 |
700 | 1 | _ | |a Buca, D. |0 P:(DE-Juel1)125569 |b 7 |u fzj |
700 | 1 | _ | |a Koenraad, P. M. |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Haverkort, J. E. M. |0 P:(DE-HGF)0 |b 9 |
700 | 1 | _ | |a Bakkers, E. P. A. M. |0 P:(DE-HGF)0 |b 10 |
773 | _ | _ | |a 10.1021/acs.nanolett.6b04627 |g Vol. 17, no. 3, p. 1538 - 1544 |0 PERI:(DE-600)2048866-X |n 3 |p 1538 - 1544 |t Nano letters |v 17 |y 2017 |x 1530-6992 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/849685/files/acs.nanolett.6b04627.pdf |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/849685/files/acs.nanolett.6b04627.gif?subformat=icon |x icon |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/849685/files/acs.nanolett.6b04627.jpg?subformat=icon-1440 |x icon-1440 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/849685/files/acs.nanolett.6b04627.jpg?subformat=icon-180 |x icon-180 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/849685/files/acs.nanolett.6b04627.jpg?subformat=icon-640 |x icon-640 |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:849685 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)161247 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)125569 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-520 |0 G:(DE-HGF)POF3-521 |2 G:(DE-HGF)POF3-500 |v Controlling Electron Charge-Based Phenomena |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2018 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NANO LETT : 2015 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a IF >= 10 |0 StatID:(DE-HGF)9910 |2 StatID |b NANO LETT : 2015 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-9-20110106 |k PGI-9 |l Halbleiter-Nanoelektronik |x 0 |
920 | 1 | _ | |0 I:(DE-82)080009_20140620 |k JARA-FIT |l JARA-FIT |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)PGI-9-20110106 |
980 | _ | _ | |a I:(DE-82)080009_20140620 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|