001     849690
005     20210129234230.0
024 7 _ |a 10.1063/1.4996109
|2 doi
024 7 _ |a 0003-6951
|2 ISSN
024 7 _ |a 1077-3118
|2 ISSN
024 7 _ |a 2128/19399
|2 Handle
024 7 _ |a WOS:000418947200035
|2 WOS
037 _ _ |a FZJ-2018-03826
082 _ _ |a 530
100 1 _ |a Glass, S.
|0 P:(DE-Juel1)165997
|b 0
|e Corresponding author
245 _ _ |a Experimental examination of tunneling paths in SiGe/Si gate-normal tunneling field-effect transistors
260 _ _ |a Melville, NY
|c 2017
|b American Inst. of Physics
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1532002533_28495
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The benefits of a gate-normal tunneling architecture in enhancing the on-current and average subthreshold swing of tunneling field-effect transistors were scrutinized in experiment through careful physical analysis of a Si0.50Ge0.50/Si heterostructure. In accordance with theoretical predictions, it is confirmed that the on-current is governed by line tunneling scaling with the source-gate overlap area of our devices. Our analysis identifies the early onset of parasitic diagonal tunneling paths as most detrimental for a low average subthreshold swing. By counter doping the channel, this onset can be shifted favorably, permitting low average subthreshold swings down to 87 mV/dec over four decades of drain current and high on-off current ratios exceeding 106.
536 _ _ |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|0 G:(DE-HGF)POF3-521
|c POF3-521
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a von den Driesch, N.
|0 P:(DE-Juel1)161247
|b 1
700 1 _ |a Strangio, S.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Schulte-Braucks, C.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Rieger, T.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Narimani, K.
|0 P:(DE-Juel1)164261
|b 5
700 1 _ |a Buca, D.
|0 P:(DE-Juel1)125569
|b 6
700 1 _ |a Mantl, S.
|0 P:(DE-Juel1)128609
|b 7
700 1 _ |a Zhao, Q. T.
|0 P:(DE-Juel1)128649
|b 8
773 _ _ |a 10.1063/1.4996109
|g Vol. 111, no. 26, p. 263504 -
|0 PERI:(DE-600)1469436-0
|n 26
|p 263504 -
|t Applied physics letters
|v 111
|y 2017
|x 1077-3118
856 4 _ |y Published on 2017-12-27. Available in OpenAccess from 2018-12-27.
|u https://juser.fz-juelich.de/record/849690/files/1.4996109.pdf
856 4 _ |y Published on 2017-12-27. Available in OpenAccess from 2018-12-27.
|x icon
|u https://juser.fz-juelich.de/record/849690/files/1.4996109.gif?subformat=icon
856 4 _ |y Published on 2017-12-27. Available in OpenAccess from 2018-12-27.
|x icon-1440
|u https://juser.fz-juelich.de/record/849690/files/1.4996109.jpg?subformat=icon-1440
856 4 _ |y Published on 2017-12-27. Available in OpenAccess from 2018-12-27.
|x icon-180
|u https://juser.fz-juelich.de/record/849690/files/1.4996109.jpg?subformat=icon-180
856 4 _ |y Published on 2017-12-27. Available in OpenAccess from 2018-12-27.
|x icon-640
|u https://juser.fz-juelich.de/record/849690/files/1.4996109.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:849690
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)165997
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)161247
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)164261
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)125569
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)128609
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)128649
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|2 G:(DE-HGF)POF3-500
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b APPL PHYS LETT : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21