000849691 001__ 849691
000849691 005__ 20210129234230.0
000849691 0247_ $$2doi$$a10.1088/1361-6641/aa95d3
000849691 0247_ $$2ISSN$$a0268-1242
000849691 0247_ $$2ISSN$$a1361-6641
000849691 0247_ $$2WOS$$aWOS:000415159700001
000849691 037__ $$aFZJ-2018-03827
000849691 082__ $$a530
000849691 1001_ $$0P:(DE-HGF)0$$aFischer, Inga A$$b0$$eCorresponding author
000849691 245__ $$aOptical critical points of Si x Ge 1− x − y Sn y alloys with high Si content
000849691 260__ $$aBristol$$bIOP Publ.$$c2017
000849691 3367_ $$2DRIVER$$aarticle
000849691 3367_ $$2DataCite$$aOutput Types/Journal article
000849691 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1532939408_25862
000849691 3367_ $$2BibTeX$$aARTICLE
000849691 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000849691 3367_ $$00$$2EndNote$$aJournal Article
000849691 520__ $$aWe extend the analysis of optical transition energies above 1.5 eV in ternary Si x Ge1−x−y Sn y alloys grown by molecular beam epitaxy to a composition range in which 1−x−y is as low as 0.405. Simple models for transition energies assume a quadratic dependence on material content. Comparing our results to existing predictions of the transition energies based on results obtained from samples with much lower Si and Sn content, however, we find a significant disagreement between experiment and theory, indicating that the assumption of a quadratic dependence might not be valid for the entire composition range of the ternary alloy.
000849691 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000849691 588__ $$aDataset connected to CrossRef
000849691 7001_ $$0P:(DE-HGF)0$$aBerrier, Audrey$$b1
000849691 7001_ $$0P:(DE-HGF)0$$aHornung, Florian$$b2
000849691 7001_ $$0P:(DE-HGF)0$$aOehme, Michael$$b3
000849691 7001_ $$0P:(DE-HGF)0$$aZaumseil, Peter$$b4
000849691 7001_ $$0P:(DE-HGF)0$$aCapellini, Giovanni$$b5
000849691 7001_ $$0P:(DE-Juel1)161247$$avon den Driesch, Nils$$b6
000849691 7001_ $$0P:(DE-Juel1)125569$$aBuca, Dan Mihai$$b7
000849691 7001_ $$0P:(DE-HGF)0$$aSchulze, Jörg$$b8
000849691 773__ $$0PERI:(DE-600)1361285-2$$a10.1088/1361-6641/aa95d3$$gVol. 32, no. 12, p. 124004 -$$n12$$p124004 -$$tSemiconductor science and technology$$v32$$x1361-6641$$y2017
000849691 8564_ $$uhttps://juser.fz-juelich.de/record/849691/files/Fischer_2017_Semicond._Sci._Technol._32_124004.pdf$$yRestricted
000849691 8564_ $$uhttps://juser.fz-juelich.de/record/849691/files/Fischer_2017_Semicond._Sci._Technol._32_124004.gif?subformat=icon$$xicon$$yRestricted
000849691 8564_ $$uhttps://juser.fz-juelich.de/record/849691/files/Fischer_2017_Semicond._Sci._Technol._32_124004.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000849691 8564_ $$uhttps://juser.fz-juelich.de/record/849691/files/Fischer_2017_Semicond._Sci._Technol._32_124004.jpg?subformat=icon-180$$xicon-180$$yRestricted
000849691 8564_ $$uhttps://juser.fz-juelich.de/record/849691/files/Fischer_2017_Semicond._Sci._Technol._32_124004.jpg?subformat=icon-640$$xicon-640$$yRestricted
000849691 8564_ $$uhttps://juser.fz-juelich.de/record/849691/files/Fischer_2017_Semicond._Sci._Technol._32_124004.pdf?subformat=pdfa$$xpdfa$$yRestricted
000849691 909CO $$ooai:juser.fz-juelich.de:849691$$pVDB
000849691 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161247$$aForschungszentrum Jülich$$b6$$kFZJ
000849691 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125569$$aForschungszentrum Jülich$$b7$$kFZJ
000849691 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000849691 9141_ $$y2018
000849691 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000849691 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000849691 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSEMICOND SCI TECH : 2015
000849691 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000849691 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000849691 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000849691 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000849691 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000849691 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000849691 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000849691 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000849691 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000849691 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000849691 920__ $$lyes
000849691 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000849691 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000849691 980__ $$ajournal
000849691 980__ $$aVDB
000849691 980__ $$aI:(DE-Juel1)PGI-9-20110106
000849691 980__ $$aI:(DE-82)080009_20140620
000849691 980__ $$aUNRESTRICTED