000849789 001__ 849789
000849789 005__ 20240712101053.0
000849789 0247_ $$2doi$$a10.5194/amt-11-3737-2018
000849789 0247_ $$2ISSN$$a1867-1381
000849789 0247_ $$2ISSN$$a1867-8548
000849789 0247_ $$2Handle$$a2128/20048
000849789 0247_ $$2WOS$$aWOS:000436461800001
000849789 037__ $$aFZJ-2018-03901
000849789 082__ $$a550
000849789 1001_ $$0P:(DE-Juel1)166303$$aBerkes, Florian$$b0$$eCorresponding author
000849789 245__ $$aThe IAGOS NOx instrument – design, operation and first results from deployment aboard passenger aircraft
000849789 260__ $$aKatlenburg-Lindau$$bCopernicus$$c2018
000849789 3367_ $$2DRIVER$$aarticle
000849789 3367_ $$2DataCite$$aOutput Types/Journal article
000849789 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1542207808_15147
000849789 3367_ $$2BibTeX$$aARTICLE
000849789 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000849789 3367_ $$00$$2EndNote$$aJournal Article
000849789 520__ $$aWe describe the nitrogen oxide instrument designed for the autonomous operation on board passenger aircraft in the framework of the European Research Infrastructure IAGOS (In-service Aircraft for a Global Observing System). We demonstrate the performance of the instrument using data from two deployment periods aboard an A340-300 aircraft of Deutsche Lufthansa. The well-established chemiluminescence detection method is used to measure nitrogen monoxide (NO) and nitrogen oxides (NOx). NOx is measured using a photolytic converter, and nitrogen dioxide (NO2) is determined from the difference between NOx and NO. This technique allows measuring at high time resolution (4s) and high precision in the low ppt range (NO: 2σ = 24pptv; NOx: 2σ =35pptv) over different ambient temperature and ambient pressure altitude ranges (from surface pressure down to 190hPa). The IAGOS NOx instrument is characterized for (1) calibration stability and total uncertainty, (2) humidity and chemical interferences (e.g., ozone; nitrous acid, HONO; peroxyacetyl nitrate, PAN) and (3) inter-instrumental precision. We demonstrate that the IAGOS NOx instrument is a robust, fully automated, and long-term stable instrument suitable for unattended operation on airborne platforms, which provides useful measurements for future air quality studies and emission estimates.
000849789 536__ $$0G:(DE-HGF)POF3-243$$a243 - Tropospheric trace substances and their transformation processes (POF3-243)$$cPOF3-243$$fPOF III$$x0
000849789 588__ $$aDataset connected to CrossRef
000849789 7001_ $$0P:(DE-Juel1)129209$$aHouben, Norbert$$b1$$ufzj
000849789 7001_ $$0P:(DE-Juel1)159541$$aBundke, Ulrich$$b2
000849789 7001_ $$0P:(DE-HGF)0$$aFranke, Harald$$b3
000849789 7001_ $$0P:(DE-Juel1)16214$$aPätz, Hans-Werner$$b4
000849789 7001_ $$0P:(DE-Juel1)16347$$aRohrer, Franz$$b5$$ufzj
000849789 7001_ $$0P:(DE-Juel1)16324$$aWahner, Andreas$$b6
000849789 7001_ $$0P:(DE-Juel1)136669$$aPetzold, Andreas$$b7$$eCorresponding author
000849789 773__ $$0PERI:(DE-600)2505596-3$$a10.5194/amt-11-3737-2018$$gVol. 11, no. 6, p. 3737 - 3757$$n6$$p3737 - 3757$$tAtmospheric measurement techniques$$v11$$x1867-8548$$y2018
000849789 8564_ $$uhttps://juser.fz-juelich.de/record/849789/files/invoice_Helmholtz-PUC-2018-22%20%28002%29.pdf
000849789 8564_ $$uhttps://juser.fz-juelich.de/record/849789/files/amt-11-3737-2018.pdf$$yOpenAccess
000849789 8564_ $$uhttps://juser.fz-juelich.de/record/849789/files/invoice_Helmholtz-PUC-2018-22%20%28002%29.gif?subformat=icon$$xicon
000849789 8564_ $$uhttps://juser.fz-juelich.de/record/849789/files/invoice_Helmholtz-PUC-2018-22%20%28002%29.jpg?subformat=icon-1440$$xicon-1440
000849789 8564_ $$uhttps://juser.fz-juelich.de/record/849789/files/invoice_Helmholtz-PUC-2018-22%20%28002%29.jpg?subformat=icon-180$$xicon-180
000849789 8564_ $$uhttps://juser.fz-juelich.de/record/849789/files/invoice_Helmholtz-PUC-2018-22%20%28002%29.jpg?subformat=icon-640$$xicon-640
000849789 8564_ $$uhttps://juser.fz-juelich.de/record/849789/files/invoice_Helmholtz-PUC-2018-22%20%28002%29.pdf?subformat=pdfa$$xpdfa
000849789 8564_ $$uhttps://juser.fz-juelich.de/record/849789/files/amt-11-3737-2018.gif?subformat=icon$$xicon$$yOpenAccess
000849789 8564_ $$uhttps://juser.fz-juelich.de/record/849789/files/amt-11-3737-2018.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000849789 8564_ $$uhttps://juser.fz-juelich.de/record/849789/files/amt-11-3737-2018.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000849789 8564_ $$uhttps://juser.fz-juelich.de/record/849789/files/amt-11-3737-2018.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000849789 8564_ $$uhttps://juser.fz-juelich.de/record/849789/files/amt-11-3737-2018.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000849789 8767_ $$8Helmholtz-PUC-2018-22$$92018-07-02$$d2018-07-03$$eAPC$$jZahlung erfolgt$$pamt-2017-435
000849789 909CO $$ooai:juser.fz-juelich.de:849789$$pdnbdelivery$$popenCost$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire
000849789 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166303$$aForschungszentrum Jülich$$b0$$kFZJ
000849789 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129209$$aForschungszentrum Jülich$$b1$$kFZJ
000849789 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159541$$aForschungszentrum Jülich$$b2$$kFZJ
000849789 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16214$$aForschungszentrum Jülich$$b4$$kFZJ
000849789 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16347$$aForschungszentrum Jülich$$b5$$kFZJ
000849789 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16324$$aForschungszentrum Jülich$$b6$$kFZJ
000849789 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)136669$$aForschungszentrum Jülich$$b7$$kFZJ
000849789 9131_ $$0G:(DE-HGF)POF3-243$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vTropospheric trace substances and their transformation processes$$x0
000849789 9141_ $$y2018
000849789 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000849789 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000849789 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000849789 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS MEAS TECH : 2015
000849789 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000849789 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000849789 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000849789 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000849789 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000849789 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000849789 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000849789 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000849789 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000849789 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000849789 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0
000849789 9801_ $$aAPC
000849789 9801_ $$aFullTexts
000849789 980__ $$ajournal
000849789 980__ $$aVDB
000849789 980__ $$aUNRESTRICTED
000849789 980__ $$aI:(DE-Juel1)IEK-8-20101013
000849789 980__ $$aAPC
000849789 981__ $$aI:(DE-Juel1)ICE-3-20101013