001     849792
005     20240712101053.0
024 7 _ |a 10.5194/acp-18-8001-2018
|2 doi
024 7 _ |a 1680-7316
|2 ISSN
024 7 _ |a 1680-7324
|2 ISSN
024 7 _ |a 2128/20045
|2 Handle
024 7 _ |a WOS:000434422200002
|2 WOS
024 7 _ |a altmetric:43418874
|2 altmetric
037 _ _ |a FZJ-2018-03904
082 _ _ |a 550
100 1 _ |a Fuchs, Hendrik
|0 P:(DE-Juel1)7363
|b 0
|e Corresponding author
245 _ _ |a Investigation of the oxidation of methyl vinyl ketone (MVK) by OH radicals in the atmospheric simulation chamber SAPHIR
260 _ _ |a Katlenburg-Lindau
|c 2018
|b EGU
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1542207314_14806
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The photooxidation of methyl vinyl ketone (MVK) was investigated in the atmospheric simulation chamber SAPHIR for conditions at which organic peroxy radicals (RO2) mainly reacted with NO ("high NO" case) and for conditions at which other reaction channels could compete ("low NO" case). Measurements of trace gas concentrations were compared to calculated concentration time series applying the Master Chemical Mechanism (MCM version 3.3.1). Product yields of methylglyoxal and glycolaldehyde were determined from measurements. For the high NO case, the methylglyoxal yield was (19±3)% and the glycolaldehyde yield was (65±14)%, consistent with recent literature studies. For the low NO case, the methylglyoxal yield reduced to (5±2)% because other RO2 reaction channels that do not form methylglyoxal became important. Consistent with literature data, the glycolaldehyde yield of (37±9)% determined in the experiment was not reduced as much as implemented in the MCM, suggesting additional reaction channels producing glycolaldehyde. At the same time, direct quantification of OH radicals in the experiments shows the need for an enhanced OH radical production at low NO conditions similar to previous studies investigating the oxidation of the parent VOC isoprene and methacrolein, the second major oxidation product of isoprene. For MVK the model–measurement discrepancy was up to a factor of 2. Product yields and OH observations were consistent with assumptions of additional RO2 plus HO2 reaction channels as proposed in literature for the major RO2 species formed from the reaction of MVK with OH. However, this study shows that also HO2 radical concentrations are underestimated by the model, suggesting that additional OH is not directly produced from RO2 radical reactions, but indirectly via increased HO2. Quantum chemical calculations show that HO2 could be produced from a fast 1,4-H shift of the second most important MVK derived RO2 species (reaction rate constant 0.003s−1). However, additional HO2 from this reaction was not sufficiently large to bring modelled HO2 radical concentrations into agreement with measurements due to the small yield of this RO2 species. An additional reaction channel of the major RO2 species with a reaction rate constant of (0.006±0.004)s−1 would be required that produces concurrently HO2 radicals and glycolaldehyde to achieve model–measurement agreement. A unimolecular reaction similar to the 1,5-H shift reaction that was proposed in literature for RO2 radicals from MVK would not explain product yields for conditions of experiments in this study. A set of H-migration reactions for the main RO2 radicals were investigated by quantum chemical and theoretical kinetic methodologies, but did not reveal a contributing route to HO2 radicals or glycolaldehyde.
536 _ _ |a 243 - Tropospheric trace substances and their transformation processes (POF3-243)
|0 G:(DE-HGF)POF3-243
|c POF3-243
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Albrecht, Sascha
|0 P:(DE-Juel1)169780
|b 1
700 1 _ |a Acir, Ismail–Hakki
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Bohn, Birger
|0 P:(DE-Juel1)2693
|b 3
|u fzj
700 1 _ |a Breitenlechner, Martin
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Dorn, Hans-Peter
|0 P:(DE-Juel1)16317
|b 5
|u fzj
700 1 _ |a Gkatzelis, Georgios
|0 P:(DE-Juel1)165645
|b 6
|u fzj
700 1 _ |a Hofzumahaus, Andreas
|0 P:(DE-Juel1)16326
|b 7
700 1 _ |a Holland, Frank
|0 P:(DE-Juel1)16342
|b 8
|u fzj
700 1 _ |a Kaminski, Martin
|0 P:(DE-Juel1)3039
|b 9
700 1 _ |a Keutsch, Frank N.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Novelli, Anna
|0 P:(DE-Juel1)166537
|b 11
700 1 _ |a Reimer, David
|0 P:(DE-Juel1)171432
|b 12
|u fzj
700 1 _ |a Rohrer, Franz
|0 P:(DE-Juel1)16347
|b 13
|u fzj
700 1 _ |a Tillmann, Ralf
|0 P:(DE-Juel1)5344
|b 14
|u fzj
700 1 _ |a Vereecken, Luc
|0 P:(DE-Juel1)167140
|b 15
700 1 _ |a Wegener, Robert
|0 P:(DE-Juel1)2367
|b 16
|u fzj
700 1 _ |a Zaytsev, Alexander
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Kiendler-Scharr, Astrid
|0 P:(DE-Juel1)4528
|b 18
|u fzj
700 1 _ |a Wahner, Andreas
|0 P:(DE-Juel1)16324
|b 19
773 _ _ |a 10.5194/acp-18-8001-2018
|g Vol. 18, no. 11, p. 8001 - 8016
|0 PERI:(DE-600)2069847-1
|n 11
|p 8001 - 8016
|t Atmospheric chemistry and physics
|v 18
|y 2018
|x 1680-7324
856 4 _ |u https://juser.fz-juelich.de/record/849792/files/invoice_Helmholtz-PUC-2018-22%20%28002%29.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/849792/files/acp-18-8001-2018.pdf
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/849792/files/invoice_Helmholtz-PUC-2018-22%20%28002%29.gif?subformat=icon
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/849792/files/invoice_Helmholtz-PUC-2018-22%20%28002%29.jpg?subformat=icon-1440
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/849792/files/invoice_Helmholtz-PUC-2018-22%20%28002%29.jpg?subformat=icon-180
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/849792/files/invoice_Helmholtz-PUC-2018-22%20%28002%29.jpg?subformat=icon-640
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/849792/files/invoice_Helmholtz-PUC-2018-22%20%28002%29.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/849792/files/acp-18-8001-2018.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/849792/files/acp-18-8001-2018.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/849792/files/acp-18-8001-2018.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/849792/files/acp-18-8001-2018.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/849792/files/acp-18-8001-2018.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:849792
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB:Earth_Environment
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)7363
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)169780
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)2693
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)16317
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)165645
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)16326
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)16342
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)3039
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)166537
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)171432
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-Juel1)16347
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 14
|6 P:(DE-Juel1)5344
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 15
|6 P:(DE-Juel1)167140
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 16
|6 P:(DE-Juel1)2367
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 18
|6 P:(DE-Juel1)4528
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 19
|6 P:(DE-Juel1)16324
913 1 _ |a DE-HGF
|l Atmosphäre und Klima
|1 G:(DE-HGF)POF3-240
|0 G:(DE-HGF)POF3-243
|2 G:(DE-HGF)POF3-200
|v Tropospheric trace substances and their transformation processes
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ATMOS CHEM PHYS : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ATMOS CHEM PHYS : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-8-20101013
|k IEK-8
|l Troposphäre
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-8-20101013
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)ICE-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21