000850239 001__ 850239
000850239 005__ 20240712100828.0
000850239 0247_ $$2doi$$a10.5194/acp-18-2973-2018
000850239 0247_ $$2Handle$$a2128/19412
000850239 0247_ $$2WOS$$aWOS:000426556500004
000850239 0247_ $$2altmetric$$aaltmetric:33809883
000850239 037__ $$aFZJ-2018-04294
000850239 082__ $$a550
000850239 1001_ $$0P:(DE-Juel1)139013$$aRolf, Christian$$b0$$eCorresponding author$$ufzj
000850239 245__ $$aWater vapor increase in the lower stratosphere of the Northern Hemisphere due to the Asian monsoon anticyclone observed during the TACTS/ESMVal campaigns
000850239 260__ $$aKatlenburg-Lindau$$bEGU$$c2018
000850239 3367_ $$2DRIVER$$aarticle
000850239 3367_ $$2DataCite$$aOutput Types/Journal article
000850239 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1532355100_21357
000850239 3367_ $$2BibTeX$$aARTICLE
000850239 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000850239 3367_ $$00$$2EndNote$$aJournal Article
000850239 520__ $$aThe impact of air masses originating in Asia and influenced by the Asian monsoon anticyclone on the Northern Hemisphere stratosphere is investigated based on in situ measurements. A statistically significant increase in water vapor (H2O) of about 0.5ppmv (11%) and methane (CH4) of up to 20ppbv (1.2%) in the extratropical stratosphere above a potential temperature of 380K was detected between August and September 2012 during the HALO aircraft missions Transport and Composition in the UT/LMS (TACTS) and Earth System Model Validation (ESMVal). We investigate the origin of the increased water vapor and methane using the three-dimensional Chemical Lagrangian Model of the Stratosphere (CLaMS). We assign the source of the moist air masses in the Asian region (northern and southern India, eastern China, southeast Asia, and the tropical Pacific) based on tracers of air mass origin used in CLaMS. The water vapor increase is correlated with an increase of the simulated Asian monsoon air mass contribution from about 10% in August to about 20% in September, which corresponds to a doubling of the influence from the Asian monsoon region. Additionally, back trajectories starting at the aircraft flight paths are used to differentiate transport from the Asian monsoon anticyclone and other source regions by calculating the Lagrangian cold point (LCP). The geographic location of the LCPs, which indicates the region where the set point of water vapor mixing ratio along these trajectories occurs, can be predominantly attributed to the Asian monsoon region.
000850239 536__ $$0G:(DE-HGF)POF3-244$$a244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)$$cPOF3-244$$fPOF III$$x0
000850239 536__ $$0G:(EU-Grant)603557$$aSTRATOCLIM - Stratospheric and upper tropospheric processes for better climate predictions (603557)$$c603557$$fFP7-ENV-2013-two-stage$$x1
000850239 7001_ $$0P:(DE-Juel1)129164$$aVogel, Bärbel$$b1$$ufzj
000850239 7001_ $$0P:(DE-HGF)0$$aHoor, P.$$b2
000850239 7001_ $$0P:(DE-Juel1)129108$$aAfchine, Armin$$b3$$ufzj
000850239 7001_ $$0P:(DE-Juel1)129123$$aGünther, Gebhard$$b4$$ufzj
000850239 7001_ $$0P:(DE-Juel1)129131$$aKrämer, Martina$$b5$$ufzj
000850239 7001_ $$0P:(DE-Juel1)129138$$aMüller, Rolf$$b6$$ufzj
000850239 7001_ $$0P:(DE-HGF)0$$aMüller, S.$$b7
000850239 7001_ $$0P:(DE-Juel1)129155$$aSpelten, Nicole$$b8$$ufzj
000850239 7001_ $$0P:(DE-Juel1)129145$$aRiese, Martin$$b9$$ufzj
000850239 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-18-2973-2018$$n4$$p2973-2983$$tAtmospheric chemistry and physics$$v18$$x1680-7316$$y2018
000850239 8564_ $$uhttps://juser.fz-juelich.de/record/850239/files/invoice_Helmholtz-PUC-2018-12.pdf
000850239 8564_ $$uhttps://juser.fz-juelich.de/record/850239/files/acp-18-2973-2018.pdf$$yOpenAccess
000850239 8564_ $$uhttps://juser.fz-juelich.de/record/850239/files/invoice_Helmholtz-PUC-2018-12.gif?subformat=icon$$xicon
000850239 8564_ $$uhttps://juser.fz-juelich.de/record/850239/files/invoice_Helmholtz-PUC-2018-12.jpg?subformat=icon-1440$$xicon-1440
000850239 8564_ $$uhttps://juser.fz-juelich.de/record/850239/files/invoice_Helmholtz-PUC-2018-12.jpg?subformat=icon-180$$xicon-180
000850239 8564_ $$uhttps://juser.fz-juelich.de/record/850239/files/invoice_Helmholtz-PUC-2018-12.jpg?subformat=icon-640$$xicon-640
000850239 8564_ $$uhttps://juser.fz-juelich.de/record/850239/files/acp-18-2973-2018.gif?subformat=icon$$xicon$$yOpenAccess
000850239 8564_ $$uhttps://juser.fz-juelich.de/record/850239/files/acp-18-2973-2018.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000850239 8564_ $$uhttps://juser.fz-juelich.de/record/850239/files/acp-18-2973-2018.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000850239 8564_ $$uhttps://juser.fz-juelich.de/record/850239/files/acp-18-2973-2018.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000850239 8767_ $$8Helmholtz-PUC-2018-12$$92018-04-04$$d2018-04-04$$eAPC$$jZahlung erfolgt$$pacp-2017-856
000850239 909CO $$ooai:juser.fz-juelich.de:850239$$pdnbdelivery$$popenCost$$pec_fundedresources$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire
000850239 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)139013$$aForschungszentrum Jülich$$b0$$kFZJ
000850239 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129164$$aForschungszentrum Jülich$$b1$$kFZJ
000850239 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129108$$aForschungszentrum Jülich$$b3$$kFZJ
000850239 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129123$$aForschungszentrum Jülich$$b4$$kFZJ
000850239 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129131$$aForschungszentrum Jülich$$b5$$kFZJ
000850239 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129138$$aForschungszentrum Jülich$$b6$$kFZJ
000850239 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129155$$aForschungszentrum Jülich$$b8$$kFZJ
000850239 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129145$$aForschungszentrum Jülich$$b9$$kFZJ
000850239 9131_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and dynamics of the upper troposphere and middle atmosphere$$x0
000850239 9141_ $$y2018
000850239 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000850239 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000850239 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000850239 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2015
000850239 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000850239 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000850239 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000850239 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000850239 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000850239 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000850239 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2015
000850239 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000850239 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000850239 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000850239 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000850239 9801_ $$aAPC
000850239 9801_ $$aFullTexts
000850239 980__ $$ajournal
000850239 980__ $$aVDB
000850239 980__ $$aI:(DE-Juel1)IEK-7-20101013
000850239 980__ $$aAPC
000850239 980__ $$aUNRESTRICTED
000850239 981__ $$aI:(DE-Juel1)ICE-4-20101013