000850239 001__ 850239 000850239 005__ 20240712100828.0 000850239 0247_ $$2doi$$a10.5194/acp-18-2973-2018 000850239 0247_ $$2Handle$$a2128/19412 000850239 0247_ $$2WOS$$aWOS:000426556500004 000850239 0247_ $$2altmetric$$aaltmetric:33809883 000850239 037__ $$aFZJ-2018-04294 000850239 082__ $$a550 000850239 1001_ $$0P:(DE-Juel1)139013$$aRolf, Christian$$b0$$eCorresponding author$$ufzj 000850239 245__ $$aWater vapor increase in the lower stratosphere of the Northern Hemisphere due to the Asian monsoon anticyclone observed during the TACTS/ESMVal campaigns 000850239 260__ $$aKatlenburg-Lindau$$bEGU$$c2018 000850239 3367_ $$2DRIVER$$aarticle 000850239 3367_ $$2DataCite$$aOutput Types/Journal article 000850239 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1532355100_21357 000850239 3367_ $$2BibTeX$$aARTICLE 000850239 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000850239 3367_ $$00$$2EndNote$$aJournal Article 000850239 520__ $$aThe impact of air masses originating in Asia and influenced by the Asian monsoon anticyclone on the Northern Hemisphere stratosphere is investigated based on in situ measurements. A statistically significant increase in water vapor (H2O) of about 0.5ppmv (11%) and methane (CH4) of up to 20ppbv (1.2%) in the extratropical stratosphere above a potential temperature of 380K was detected between August and September 2012 during the HALO aircraft missions Transport and Composition in the UT/LMS (TACTS) and Earth System Model Validation (ESMVal). We investigate the origin of the increased water vapor and methane using the three-dimensional Chemical Lagrangian Model of the Stratosphere (CLaMS). We assign the source of the moist air masses in the Asian region (northern and southern India, eastern China, southeast Asia, and the tropical Pacific) based on tracers of air mass origin used in CLaMS. The water vapor increase is correlated with an increase of the simulated Asian monsoon air mass contribution from about 10% in August to about 20% in September, which corresponds to a doubling of the influence from the Asian monsoon region. Additionally, back trajectories starting at the aircraft flight paths are used to differentiate transport from the Asian monsoon anticyclone and other source regions by calculating the Lagrangian cold point (LCP). The geographic location of the LCPs, which indicates the region where the set point of water vapor mixing ratio along these trajectories occurs, can be predominantly attributed to the Asian monsoon region. 000850239 536__ $$0G:(DE-HGF)POF3-244$$a244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)$$cPOF3-244$$fPOF III$$x0 000850239 536__ $$0G:(EU-Grant)603557$$aSTRATOCLIM - Stratospheric and upper tropospheric processes for better climate predictions (603557)$$c603557$$fFP7-ENV-2013-two-stage$$x1 000850239 7001_ $$0P:(DE-Juel1)129164$$aVogel, Bärbel$$b1$$ufzj 000850239 7001_ $$0P:(DE-HGF)0$$aHoor, P.$$b2 000850239 7001_ $$0P:(DE-Juel1)129108$$aAfchine, Armin$$b3$$ufzj 000850239 7001_ $$0P:(DE-Juel1)129123$$aGünther, Gebhard$$b4$$ufzj 000850239 7001_ $$0P:(DE-Juel1)129131$$aKrämer, Martina$$b5$$ufzj 000850239 7001_ $$0P:(DE-Juel1)129138$$aMüller, Rolf$$b6$$ufzj 000850239 7001_ $$0P:(DE-HGF)0$$aMüller, S.$$b7 000850239 7001_ $$0P:(DE-Juel1)129155$$aSpelten, Nicole$$b8$$ufzj 000850239 7001_ $$0P:(DE-Juel1)129145$$aRiese, Martin$$b9$$ufzj 000850239 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-18-2973-2018$$n4$$p2973-2983$$tAtmospheric chemistry and physics$$v18$$x1680-7316$$y2018 000850239 8564_ $$uhttps://juser.fz-juelich.de/record/850239/files/invoice_Helmholtz-PUC-2018-12.pdf 000850239 8564_ $$uhttps://juser.fz-juelich.de/record/850239/files/acp-18-2973-2018.pdf$$yOpenAccess 000850239 8564_ $$uhttps://juser.fz-juelich.de/record/850239/files/invoice_Helmholtz-PUC-2018-12.gif?subformat=icon$$xicon 000850239 8564_ $$uhttps://juser.fz-juelich.de/record/850239/files/invoice_Helmholtz-PUC-2018-12.jpg?subformat=icon-1440$$xicon-1440 000850239 8564_ $$uhttps://juser.fz-juelich.de/record/850239/files/invoice_Helmholtz-PUC-2018-12.jpg?subformat=icon-180$$xicon-180 000850239 8564_ $$uhttps://juser.fz-juelich.de/record/850239/files/invoice_Helmholtz-PUC-2018-12.jpg?subformat=icon-640$$xicon-640 000850239 8564_ $$uhttps://juser.fz-juelich.de/record/850239/files/acp-18-2973-2018.gif?subformat=icon$$xicon$$yOpenAccess 000850239 8564_ $$uhttps://juser.fz-juelich.de/record/850239/files/acp-18-2973-2018.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess 000850239 8564_ $$uhttps://juser.fz-juelich.de/record/850239/files/acp-18-2973-2018.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 000850239 8564_ $$uhttps://juser.fz-juelich.de/record/850239/files/acp-18-2973-2018.jpg?subformat=icon-640$$xicon-640$$yOpenAccess 000850239 8767_ $$8Helmholtz-PUC-2018-12$$92018-04-04$$d2018-04-04$$eAPC$$jZahlung erfolgt$$pacp-2017-856 000850239 909CO $$ooai:juser.fz-juelich.de:850239$$pdnbdelivery$$popenCost$$pec_fundedresources$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire 000850239 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)139013$$aForschungszentrum Jülich$$b0$$kFZJ 000850239 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129164$$aForschungszentrum Jülich$$b1$$kFZJ 000850239 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129108$$aForschungszentrum Jülich$$b3$$kFZJ 000850239 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129123$$aForschungszentrum Jülich$$b4$$kFZJ 000850239 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129131$$aForschungszentrum Jülich$$b5$$kFZJ 000850239 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129138$$aForschungszentrum Jülich$$b6$$kFZJ 000850239 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129155$$aForschungszentrum Jülich$$b8$$kFZJ 000850239 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129145$$aForschungszentrum Jülich$$b9$$kFZJ 000850239 9131_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and dynamics of the upper troposphere and middle atmosphere$$x0 000850239 9141_ $$y2018 000850239 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000850239 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000850239 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000850239 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2015 000850239 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal 000850239 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ 000850239 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000850239 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000850239 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000850239 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000850239 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2015 000850239 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000850239 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000850239 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000850239 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0 000850239 9801_ $$aAPC 000850239 9801_ $$aFullTexts 000850239 980__ $$ajournal 000850239 980__ $$aVDB 000850239 980__ $$aI:(DE-Juel1)IEK-7-20101013 000850239 980__ $$aAPC 000850239 980__ $$aUNRESTRICTED 000850239 981__ $$aI:(DE-Juel1)ICE-4-20101013