001     850274
005     20240610121326.0
024 7 _ |a 10.1021/acssensors.8b00143
|2 doi
024 7 _ |a pmid:29979038
|2 pmid
024 7 _ |a WOS:000443103800006
|2 WOS
024 7 _ |a altmetric:44770825
|2 altmetric
037 _ _ |a FZJ-2018-04316
082 _ _ |a 540
100 1 _ |a Höfig, Henning
|0 P:(DE-Juel1)165927
|b 0
245 _ _ |a Genetically Encoded Förster Resonance Energy Transfer-Based Biosensors Studied on the Single-Molecule Level
260 _ _ |a Washington, DC
|c 2018
|b ACS Publications
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1548836839_8840
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Genetically encoded Förster resonance energy transfer (FRET)-based biosensors for the quantification of ligand molecules change the magnitude of FRET between two fluorescent proteins upon binding a target metabolite. When highly sensitive sensors are being designed, extensive sensor optimization is essential. However, it is often difficult to verify the ideas of modifications made to a sensor during the sensor optimization process because of the limited information content of ensemble FRET measurements. In contrast, single-molecule detection provides detailed information and higher accuracy. Here, we investigated a set of glucose and crowding sensors on the single-molecule level. We report the first comprehensive single-molecule study of FRET-based biosensors with reasonable counting statistics and identify characteristics in the single-molecule FRET histograms that constitute fingerprints of sensor performance. Hence, our single-molecule approach extends the toolbox of methods aiming to understand and optimize the design of FRET-based biosensors.
536 _ _ |a 551 - Functional Macromolecules and Complexes (POF3-551)
|0 G:(DE-HGF)POF3-551
|c POF3-551
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Otten, Julia
|0 P:(DE-Juel1)165764
|b 1
700 1 _ |a Steffen, Victoria
|0 P:(DE-Juel1)145517
|b 2
700 1 _ |a Pohl, Martina
|0 P:(DE-Juel1)131522
|b 3
700 1 _ |a Boersma, Arnold J.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Fitter, Joerg
|0 P:(DE-HGF)0
|b 5
|e Corresponding author
773 _ _ |a 10.1021/acssensors.8b00143
|g p. acssensors.8b00143
|0 PERI:(DE-600)2843497-3
|n 8
|p 1462–1470
|t ACS sensors
|v 3
|y 2018
|x 2379-3694
856 4 _ |u https://juser.fz-juelich.de/record/850274/files/acssensors.8b00143.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/850274/files/acssensors.8b00143.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |p VDB
|o oai:juser.fz-juelich.de:850274
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)165927
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)165764
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)145517
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)131522
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-551
|2 G:(DE-HGF)POF3-500
|v Functional Macromolecules and Complexes
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-5-20110106
|k ICS-5
|l Molekulare Biophysik
|x 0
920 1 _ |0 I:(DE-Juel1)IBG-1-20101118
|k IBG-1
|l Biotechnologie
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ICS-5-20110106
980 _ _ |a I:(DE-Juel1)IBG-1-20101118
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-6-20200312
981 _ _ |a I:(DE-Juel1)ER-C-3-20170113


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21