000850317 001__ 850317
000850317 005__ 20240711085603.0
000850317 0247_ $$2doi$$a10.1016/j.memsci.2018.07.028
000850317 0247_ $$2ISSN$$a0376-7388
000850317 0247_ $$2ISSN$$a1873-3123
000850317 0247_ $$2Handle$$a2128/19587
000850317 0247_ $$2WOS$$aWOS:000442653900023
000850317 0247_ $$2altmetric$$aaltmetric:46579376
000850317 037__ $$aFZJ-2018-04354
000850317 041__ $$aEnglish
000850317 082__ $$a570
000850317 1001_ $$0P:(DE-Juel1)129660$$aSchulze-Küppers, F.$$b0$$eCorresponding author
000850317 245__ $$aComparison of freeze-dried and tape-cast support microstructure on high-flux oxygen transport membrane performance
000850317 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2018
000850317 3367_ $$2DRIVER$$aarticle
000850317 3367_ $$2DataCite$$aOutput Types/Journal article
000850317 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1534244498_21736
000850317 3367_ $$2BibTeX$$aARTICLE
000850317 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000850317 3367_ $$00$$2EndNote$$aJournal Article
000850317 520__ $$aThe overall permeation rate through asymmetric oxygen transport membranes is significantly governed by the porous support. Therefore, the microstructuring of the support's pore structure is essential to achieving the highest performances. Freeze casting is already proven to obtain hierarchical porous structures with low tortuosity, which potentially enhances the oxygen flux of oxygen transport membranes. Although a performance improvement has been reported, such improvement is not self-evident. There has yet to be a detailed comparison of the achieved microstructures in order to identify the relevant microstructural parameters. Asymmetric membranes from Ba0.5Sr0.5(Co0.8Fe0.2)0.97Zr0.03O3-δ consisting of a surface-activated 20 µm membrane layer with tape- or freeze-cast supports that have identical pore volume and layer thickness were manufactured, characterized, and compared by means of oxygen flux measurements. They were also microstructurally investigated via computed X-Ray tomography and flow simulation experiments. In the air/Ar gradient, the freeze-cast support membrane performs below the tape-cast-supported membrane. In particular, the transition zone close to the membrane, which is caused by the freezing process, significantly constrains the diffusivity and permeability of the support, and therefore leads to concentration polarizations. At temperatures below 800 °C, surface exchange kinetics at the membrane-support interface become rate-limiting.
000850317 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000850317 536__ $$0G:(EU-Grant)608524$$aGREEN-CC - Graded Membranes for Energy Efficient New Generation Carbon Capture Process (608524)$$c608524$$fFP7-ENERGY-2013-1$$x1
000850317 588__ $$aDataset connected to CrossRef
000850317 7001_ $$0P:(DE-Juel1)164278$$aUnije, U. V.$$b1$$ufzj
000850317 7001_ $$0P:(DE-HGF)0$$aBlank, H.$$b2
000850317 7001_ $$0P:(DE-Juel1)161336$$aBalaguer, M.$$b3
000850317 7001_ $$0P:(DE-Juel1)129587$$aBaumann, S.$$b4
000850317 7001_ $$0P:(DE-Juel1)129641$$aMücke, R.$$b5$$ufzj
000850317 7001_ $$0P:(DE-Juel1)129637$$aMeulenberg, W. A.$$b6$$ufzj
000850317 773__ $$0PERI:(DE-600)1491419-0$$a10.1016/j.memsci.2018.07.028$$gVol. 564, p. 218 - 226$$p218 - 226$$tJournal of membrane science$$v564$$x0376-7388$$y2018
000850317 8564_ $$uhttps://juser.fz-juelich.de/record/850317/files/1-s2.0-S0376738818313747-main.pdf$$yRestricted
000850317 8564_ $$uhttps://juser.fz-juelich.de/record/850317/files/Manuscript.pdf$$yPublished on 2018-07-12. Available in OpenAccess from 2020-07-12.
000850317 8564_ $$uhttps://juser.fz-juelich.de/record/850317/files/Manuscript.gif?subformat=icon$$xicon$$yPublished on 2018-07-12. Available in OpenAccess from 2020-07-12.
000850317 8564_ $$uhttps://juser.fz-juelich.de/record/850317/files/Manuscript.jpg?subformat=icon-1440$$xicon-1440$$yPublished on 2018-07-12. Available in OpenAccess from 2020-07-12.
000850317 8564_ $$uhttps://juser.fz-juelich.de/record/850317/files/Manuscript.jpg?subformat=icon-180$$xicon-180$$yPublished on 2018-07-12. Available in OpenAccess from 2020-07-12.
000850317 8564_ $$uhttps://juser.fz-juelich.de/record/850317/files/Manuscript.jpg?subformat=icon-640$$xicon-640$$yPublished on 2018-07-12. Available in OpenAccess from 2020-07-12.
000850317 8564_ $$uhttps://juser.fz-juelich.de/record/850317/files/1-s2.0-S0376738818313747-main.gif?subformat=icon$$xicon$$yRestricted
000850317 8564_ $$uhttps://juser.fz-juelich.de/record/850317/files/1-s2.0-S0376738818313747-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000850317 8564_ $$uhttps://juser.fz-juelich.de/record/850317/files/1-s2.0-S0376738818313747-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000850317 8564_ $$uhttps://juser.fz-juelich.de/record/850317/files/1-s2.0-S0376738818313747-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000850317 8564_ $$uhttps://juser.fz-juelich.de/record/850317/files/1-s2.0-S0376738818313747-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000850317 909CO $$ooai:juser.fz-juelich.de:850317$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000850317 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129660$$aForschungszentrum Jülich$$b0$$kFZJ
000850317 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164278$$aForschungszentrum Jülich$$b1$$kFZJ
000850317 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129587$$aForschungszentrum Jülich$$b4$$kFZJ
000850317 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129641$$aForschungszentrum Jülich$$b5$$kFZJ
000850317 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129637$$aForschungszentrum Jülich$$b6$$kFZJ
000850317 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000850317 9141_ $$y2018
000850317 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000850317 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000850317 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000850317 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000850317 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MEMBRANE SCI : 2015
000850317 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ MEMBRANE SCI : 2015
000850317 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000850317 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000850317 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000850317 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000850317 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000850317 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000850317 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000850317 920__ $$lyes
000850317 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000850317 9801_ $$aFullTexts
000850317 980__ $$ajournal
000850317 980__ $$aVDB
000850317 980__ $$aUNRESTRICTED
000850317 980__ $$aI:(DE-Juel1)IEK-1-20101013
000850317 981__ $$aI:(DE-Juel1)IMD-2-20101013