Journal Article FZJ-2018-04354

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Comparison of freeze-dried and tape-cast support microstructure on high-flux oxygen transport membrane performance

 ;  ;  ;  ;  ;  ;

2018
Elsevier New York, NY [u.a.]

Journal of membrane science 564, 218 - 226 () [10.1016/j.memsci.2018.07.028]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: The overall permeation rate through asymmetric oxygen transport membranes is significantly governed by the porous support. Therefore, the microstructuring of the support's pore structure is essential to achieving the highest performances. Freeze casting is already proven to obtain hierarchical porous structures with low tortuosity, which potentially enhances the oxygen flux of oxygen transport membranes. Although a performance improvement has been reported, such improvement is not self-evident. There has yet to be a detailed comparison of the achieved microstructures in order to identify the relevant microstructural parameters. Asymmetric membranes from Ba0.5Sr0.5(Co0.8Fe0.2)0.97Zr0.03O3-δ consisting of a surface-activated 20 µm membrane layer with tape- or freeze-cast supports that have identical pore volume and layer thickness were manufactured, characterized, and compared by means of oxygen flux measurements. They were also microstructurally investigated via computed X-Ray tomography and flow simulation experiments. In the air/Ar gradient, the freeze-cast support membrane performs below the tape-cast-supported membrane. In particular, the transition zone close to the membrane, which is caused by the freezing process, significantly constrains the diffusivity and permeability of the support, and therefore leads to concentration polarizations. At temperatures below 800 °C, surface exchange kinetics at the membrane-support interface become rate-limiting.

Classification:

Contributing Institute(s):
  1. Werkstoffsynthese und Herstellungsverfahren (IEK-1)
Research Program(s):
  1. 113 - Methods and Concepts for Material Development (POF3-113) (POF3-113)
  2. GREEN-CC - Graded Membranes for Energy Efficient New Generation Carbon Capture Process (608524) (608524)

Appears in the scientific report 2018
Database coverage:
Medline ; Embargoed OpenAccess ; Current Contents - Engineering, Computing and Technology ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; IF >= 5 ; JCR ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IMD > IMD-2
Workflow collections > Public records
IEK > IEK-1
Publications database
Open Access

 Record created 2018-07-20, last modified 2024-07-11


Published on 2018-07-12. Available in OpenAccess from 2020-07-12.:
Download fulltext PDF
(additional files)
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)