000850770 001__ 850770
000850770 005__ 20220930130154.0
000850770 0247_ $$2doi$$a10.1093/cercor/bhy146
000850770 0247_ $$2ISSN$$a1047-3211
000850770 0247_ $$2ISSN$$a1460-2199
000850770 0247_ $$2pmid$$apmid:29931200
000850770 0247_ $$2WOS$$aWOS:000477708300003
000850770 0247_ $$2altmetric$$aaltmetric:63528631
000850770 037__ $$aFZJ-2018-04544
000850770 082__ $$a610
000850770 1001_ $$0P:(DE-Juel1)166302$$aYakoubi, Rachida$$b0$$ufzj
000850770 245__ $$aQuantitative Three-Dimensional Reconstructions of Excitatory Synaptic Boutons in Layer 5 of the Adult Human Temporal Lobe Neocortex: A Fine-Scale Electron Microscopic Analysis
000850770 260__ $$aOxford$$bOxford Univ. Press$$c2019
000850770 3367_ $$2DRIVER$$aarticle
000850770 3367_ $$2DataCite$$aOutput Types/Journal article
000850770 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1570524265_2024
000850770 3367_ $$2BibTeX$$aARTICLE
000850770 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000850770 3367_ $$00$$2EndNote$$aJournal Article
000850770 520__ $$aStudies of synapses are available for different brain regions of several animal species including non-human primates, but comparatively little is known about their quantitative morphology in humans. Here, synaptic boutons in Layer 5 (L5) of the human temporal lobe (TL) neocortex were investigated in biopsy tissue, using fine-scale electron microscopy, and quantitative three-dimensional reconstructions. The size and organization of the presynaptic active zones (PreAZs), postsynaptic densities (PSDs), and that of the 3 distinct pools of synaptic vesicles (SVs) were particularly analyzed. L5 synaptic boutons were medium-sized (~6 μm2) with a single but relatively large PreAZ (~0.3 μm2). They contained a total of ~1500 SVs/bouton, ~20 constituting the putative readily releasable pool (RRP), ~180 the recycling pool (RP), and the remainder, the resting pool. The PreAZs, PSDs, and vesicle pools are ~3-fold larger than those of CNS synapses in other species. Astrocytic processes reached the synaptic cleft and may regulate the glutamate concentration. Profound differences exist between synapses in human TL neocortex and those described in various species, particularly in the size and geometry of PreAZs and PSDs, the large RRP/RP, and the astrocytic ensheathment suggesting high synaptic efficacy, strength, and modulation of synaptic transmission at human synapses.
000850770 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000850770 536__ $$0G:(DE-HGF)POF3-571$$a571 - Connectivity and Activity (POF3-571)$$cPOF3-571$$fPOF III$$x1
000850770 536__ $$0G:(DE-Juel1)HGF-SMHB-2013-2017$$aSMHB - Supercomputing and Modelling for the Human Brain (HGF-SMHB-2013-2017)$$cHGF-SMHB-2013-2017$$fSMHB$$x2
000850770 536__ $$0G:(DE-Juel1)Helmholtz-SLNS$$aSLNS - SimLab Neuroscience (Helmholtz-SLNS)$$cHelmholtz-SLNS$$x3
000850770 588__ $$aDataset connected to CrossRef
000850770 7001_ $$0P:(DE-Juel1)131704$$aRollenhagen, Astrid$$b1$$ufzj
000850770 7001_ $$0P:(DE-HGF)0$$avon Lehe, Marec$$b2
000850770 7001_ $$0P:(DE-Juel1)171522$$aShao, Yachao$$b3$$ufzj
000850770 7001_ $$0P:(DE-HGF)0$$aSätzler, Kurt$$b4
000850770 7001_ $$0P:(DE-Juel1)131696$$aLübke, Joachim$$b5$$eCorresponding author$$ufzj
000850770 773__ $$0PERI:(DE-600)1483485-6$$a10.1093/cercor/bhy146$$n7$$p2797–2814$$tCerebral cortex$$v29$$x1460-2199$$y2019
000850770 8564_ $$uhttps://juser.fz-juelich.de/record/850770/files/000082392532_20180726020320.pdf
000850770 8564_ $$uhttps://juser.fz-juelich.de/record/850770/files/bhy146.pdf$$yRestricted
000850770 8564_ $$uhttps://juser.fz-juelich.de/record/850770/files/000082392532_20180726020320.gif?subformat=icon$$xicon
000850770 8564_ $$uhttps://juser.fz-juelich.de/record/850770/files/000082392532_20180726020320.jpg?subformat=icon-1440$$xicon-1440
000850770 8564_ $$uhttps://juser.fz-juelich.de/record/850770/files/000082392532_20180726020320.jpg?subformat=icon-180$$xicon-180
000850770 8564_ $$uhttps://juser.fz-juelich.de/record/850770/files/000082392532_20180726020320.jpg?subformat=icon-640$$xicon-640
000850770 8564_ $$uhttps://juser.fz-juelich.de/record/850770/files/000082392532_20180726020320.pdf?subformat=pdfa$$xpdfa
000850770 8564_ $$uhttps://juser.fz-juelich.de/record/850770/files/bhy146.gif?subformat=icon$$xicon$$yRestricted
000850770 8564_ $$uhttps://juser.fz-juelich.de/record/850770/files/bhy146.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000850770 8564_ $$uhttps://juser.fz-juelich.de/record/850770/files/bhy146.jpg?subformat=icon-180$$xicon-180$$yRestricted
000850770 8564_ $$uhttps://juser.fz-juelich.de/record/850770/files/bhy146.jpg?subformat=icon-640$$xicon-640$$yRestricted
000850770 8564_ $$uhttps://juser.fz-juelich.de/record/850770/files/bhy146.pdf?subformat=pdfa$$xpdfa$$yRestricted
000850770 8767_ $$8E11996649$$92018-07-26$$d2018-07-26$$ePage charges$$jZahlung erfolgt$$pbhy146
000850770 909CO $$ooai:juser.fz-juelich.de:850770$$pOpenAPC$$pVDB$$popenCost
000850770 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166302$$aForschungszentrum Jülich$$b0$$kFZJ
000850770 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131704$$aForschungszentrum Jülich$$b1$$kFZJ
000850770 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171522$$aForschungszentrum Jülich$$b3$$kFZJ
000850770 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131696$$aForschungszentrum Jülich$$b5$$kFZJ
000850770 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000850770 9131_ $$0G:(DE-HGF)POF3-571$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x1
000850770 9141_ $$y2019
000850770 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000850770 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000850770 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCEREB CORTEX : 2015
000850770 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000850770 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000850770 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000850770 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000850770 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000850770 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000850770 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000850770 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000850770 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000850770 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCEREB CORTEX : 2015
000850770 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x0
000850770 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x1
000850770 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x2
000850770 980__ $$ajournal
000850770 980__ $$aVDB
000850770 980__ $$aI:(DE-Juel1)INM-10-20170113
000850770 980__ $$aI:(DE-Juel1)JSC-20090406
000850770 980__ $$aI:(DE-82)080012_20140620
000850770 980__ $$aAPC
000850770 980__ $$aUNRESTRICTED
000850770 9801_ $$aAPC