000850779 001__ 850779
000850779 005__ 20240711101507.0
000850779 0247_ $$2doi$$a10.1149/2.0541810jes
000850779 0247_ $$2ISSN$$a0013-4651
000850779 0247_ $$2ISSN$$a0096-4743
000850779 0247_ $$2ISSN$$a0096-4786
000850779 0247_ $$2ISSN$$a1945-7111
000850779 0247_ $$2Handle$$a2128/19455
000850779 0247_ $$2WOS$$aWOS:000441061800108
000850779 037__ $$aFZJ-2018-04553
000850779 082__ $$a540
000850779 1001_ $$00000-0002-4552-062X$$aReshetenko, Tatyana$$b0
000850779 245__ $$aTwo States of the Cathode Catalyst Layer Operation in a PEM Fuel Cell
000850779 260__ $$aPennington, NJ$$bElectrochemical Soc.$$c2018
000850779 3367_ $$2DRIVER$$aarticle
000850779 3367_ $$2DataCite$$aOutput Types/Journal article
000850779 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1533109842_30750
000850779 3367_ $$2BibTeX$$aARTICLE
000850779 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000850779 3367_ $$00$$2EndNote$$aJournal Article
000850779 520__ $$aWe measure impedance of a standard Pt/C–based PEM fuel cell for a series of current densities from 50 to 400 mA cm− 2. Using our recent model for extraction of spatially–resolved data from impedance spectra, we plot the dependence of the oxygen diffusion coefficient Dox in the cathode catalyst layer (CCL) and Db in the gas–diffusion layer (GDL) on the distance along the cathode channel. While the GDL oxygen diffusivity is fairly uniform over the cell active area, the shape of Dox indicates that the cell is separated into two domains with high and low water contents in the CCL. We attribute this effect to the positive feedback loop between the rates of oxygen transport and liquid water evaporation in the CCL, leading to local CCL flooding.
000850779 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000850779 588__ $$aDataset connected to CrossRef
000850779 7001_ $$0P:(DE-Juel1)129878$$aKulikovsky, Andrei$$b1$$eCorresponding author
000850779 773__ $$0PERI:(DE-600)2002179-3$$a10.1149/2.0541810jes$$gVol. 165, no. 10, p. F821 - F826$$n10$$pF821 - F826$$tJournal of the Electrochemical Society$$v165$$x1945-7111$$y2018
000850779 8564_ $$uhttps://juser.fz-juelich.de/record/850779/files/J.%20Electrochem.%20Soc.-2018-Reshetenko-F821-6.pdf$$yOpenAccess
000850779 8564_ $$uhttps://juser.fz-juelich.de/record/850779/files/J.%20Electrochem.%20Soc.-2018-Reshetenko-F821-6.gif?subformat=icon$$xicon$$yOpenAccess
000850779 8564_ $$uhttps://juser.fz-juelich.de/record/850779/files/J.%20Electrochem.%20Soc.-2018-Reshetenko-F821-6.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000850779 8564_ $$uhttps://juser.fz-juelich.de/record/850779/files/J.%20Electrochem.%20Soc.-2018-Reshetenko-F821-6.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000850779 8564_ $$uhttps://juser.fz-juelich.de/record/850779/files/J.%20Electrochem.%20Soc.-2018-Reshetenko-F821-6.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000850779 8564_ $$uhttps://juser.fz-juelich.de/record/850779/files/J.%20Electrochem.%20Soc.-2018-Reshetenko-F821-6.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000850779 8767_ $$810000011955$$92018-07-11$$d2018-07-11$$eHybrid-OA$$jOffsetting$$lOffsetting: ECS$$pJESP-18-1401R$$z800 USD, FZJ-2018-04117
000850779 909CO $$ooai:juser.fz-juelich.de:850779$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000850779 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129878$$aForschungszentrum Jülich$$b1$$kFZJ
000850779 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000850779 9141_ $$y2018
000850779 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000850779 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000850779 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000850779 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ ELECTROCHEM SOC : 2015
000850779 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000850779 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000850779 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000850779 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000850779 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000850779 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000850779 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000850779 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000850779 920__ $$lyes
000850779 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lElektrochemische Verfahrenstechnik$$x0
000850779 9801_ $$aAPC
000850779 9801_ $$aFullTexts
000850779 980__ $$ajournal
000850779 980__ $$aVDB
000850779 980__ $$aI:(DE-Juel1)IEK-3-20101013
000850779 980__ $$aAPC
000850779 980__ $$aUNRESTRICTED
000850779 981__ $$aI:(DE-Juel1)ICE-2-20101013