001     850780
005     20240711114048.0
024 7 _ |a 10.1016/j.nme.2018.07.001
|2 doi
024 7 _ |a 2128/19461
|2 Handle
024 7 _ |a WOS:000442226800028
|2 WOS
037 _ _ |a FZJ-2018-04554
082 _ _ |a 333.7
100 1 _ |a Koslowski, H. R.
|0 P:(DE-Juel1)130066
|b 0
|e Corresponding author
245 _ _ |a Temperature-dependent in-situ LEIS measurement of W surface enrichment by 250 eV D sputtering of EUROFER
260 _ _ |a Amsterdam [u.a.]
|c 2018
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1532955262_1219
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Tungsten surface enrichment of EUROFER steel by 250 eV deuterium sputtering is in-situ measured using low energy He$^{+}$ ion scattering spectroscopy. The samples are irradiated at various temperatures between 300 K and 800 K with a deuterium atom flux of 2e18 m$^{-2}$s$^{-1}$ and maximum fluence up to 1.1e23 m$^{-2}$. The measurements at room temperature show a clear increase of tungsten surface density, but already at 520 K the observed enrichment is only half as large. At a temperature of 800 K no tungsten surface enrichment is detectable. The obtained data allows to determine an upper limit of 1.6 eV for the diffusion activation energy of tungsten in EUROFER.
536 _ _ |a 174 - Plasma-Wall-Interaction (POF3-174)
|0 G:(DE-HGF)POF3-174
|c POF3-174
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Bhattacharyya, S. R.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Hansen, P.
|0 P:(DE-Juel1)164146
|b 2
700 1 _ |a Linsmeier, Ch.
|0 P:(DE-Juel1)157640
|b 3
700 1 _ |a Rasiński, M.
|0 P:(DE-Juel1)162160
|b 4
|u fzj
700 1 _ |a Ström, P.
|0 0000-0001-9299-3262
|b 5
773 _ _ |a 10.1016/j.nme.2018.07.001
|g Vol. 16, p. 181 - 190
|0 PERI:(DE-600)2808888-8
|p 181 - 190
|t Nuclear materials and energy
|v 16
|y 2018
|x 2352-1791
856 4 _ |u https://juser.fz-juelich.de/record/850780/files/20180726111628828.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/850780/files/1-s2.0-S2352179118300279-main.pdf
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/850780/files/20180726111628828.gif?subformat=icon
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/850780/files/20180726111628828.jpg?subformat=icon-1440
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/850780/files/20180726111628828.jpg?subformat=icon-180
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/850780/files/20180726111628828.jpg?subformat=icon-640
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/850780/files/20180726111628828.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/850780/files/1-s2.0-S2352179118300279-main.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/850780/files/1-s2.0-S2352179118300279-main.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/850780/files/1-s2.0-S2352179118300279-main.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/850780/files/1-s2.0-S2352179118300279-main.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/850780/files/1-s2.0-S2352179118300279-main.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:850780
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)130066
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)164146
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)157640
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)162160
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 0000-0001-9299-3262
913 1 _ |a DE-HGF
|l Kernfusion
|1 G:(DE-HGF)POF3-170
|0 G:(DE-HGF)POF3-174
|2 G:(DE-HGF)POF3-100
|v Plasma-Wall-Interaction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21