001     850805
005     20240712100847.0
024 7 _ |a 10.1029/2018JD028696
|2 doi
024 7 _ |a 0148-0227
|2 ISSN
024 7 _ |a 2156-2202
|2 ISSN
024 7 _ |a 2169-897X
|2 ISSN
024 7 _ |a 2169-8996
|2 ISSN
024 7 _ |a 2128/19871
|2 Handle
024 7 _ |a WOS:000445617500048
|2 WOS
024 7 _ |a altmetric:47622983
|2 altmetric
037 _ _ |a FZJ-2018-04576
082 _ _ |a 550
100 1 _ |a Tao, M.
|0 P:(DE-Juel1)156119
|b 0
|e Corresponding author
245 _ _ |a A Lagrangian Model Diagnosis of Stratospheric Contributions to Tropical Midtropospheric Air
260 _ _ |a Hoboken, NJ
|c 2018
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1540445238_17040
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Airborne in situ observations during the Convective Transport of Active Species in the Tropics campaign in January–February 2014 revealed a large region over the tropical western Pacific where the midtroposphere had a layered structure with a distinct chemical signature of high ozone and low water vapor (HOLW). The observed anticorrelation between ozone and water vapor is a strong indication of transport from the midlatitude upper troposphere and lower stratosphere. This work presents a diagnosis of stratospheric air in the tropical western Pacific midtroposphere through isentropic transport and mixing. Using the Chemical Lagrangian Model of the Stratosphere, we characterize and quantify the contribution of transported stratospheric air to the observed HOLW layers. The result indicates that the isentropic transport is an effective process for stratospheric air to mix into the tropical midtroposphere. Using the modeled stratospheric tracer and 3‐D back trajectories, we identified that 60% of the observed HOLW air masses contain significant stratospheric influence. We have also examined possible contribution to the HOLW layer from ozone production related to biomass burning emissions. Clear chemical signature of this process is found in ∼8% of the HOLW air masses, identified by positive correlations among O3, HCN, and CO. This analysis provides the first quantitative diagnosis of the contribution from the stratosphere‐to‐troposphere transport, highlights the importance of mixing in chemical transport, and demonstrates the limitations of pure Lagrangian trajectory calculations in quantifying transport.
536 _ _ |a 244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)
|0 G:(DE-HGF)POF3-244
|c POF3-244
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Pan, L. L.
|0 0000-0001-7377-2114
|b 1
700 1 _ |a Konopka, P.
|0 P:(DE-Juel1)129130
|b 2
700 1 _ |a Honomichl, S. B.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Kinnison, D. E.
|0 0000-0002-3418-0834
|b 4
700 1 _ |a Apel, E. C.
|0 0000-0001-9421-818X
|b 5
773 _ _ |a 10.1029/2018JD028696
|0 PERI:(DE-600)2016800-7
|n 7
|p 9764-9785
|t Journal of geophysical research / Atmospheres
|v 123
|y 2018
|x 0148-0227
856 4 _ |u https://juser.fz-juelich.de/record/850805/files/AS_1180727155646.pdf
856 4 _ |u https://juser.fz-juelich.de/record/850805/files/F6850757.pdf
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/850805/files/AS_1180727155646.gif?subformat=icon
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/850805/files/AS_1180727155646.jpg?subformat=icon-1440
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/850805/files/AS_1180727155646.jpg?subformat=icon-180
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/850805/files/AS_1180727155646.jpg?subformat=icon-640
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/850805/files/AS_1180727155646.pdf?subformat=pdfa
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/850805/files/F6850757.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/850805/files/Tao_et_al-2018-Journal_of_Geophysical_Research%253A_Atmospheres%281%29.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/850805/files/Tao_et_al-2018-Journal_of_Geophysical_Research%253A_Atmospheres%281%29.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:850805
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB:Earth_Environment
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)156119
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129130
913 1 _ |a DE-HGF
|l Atmosphäre und Klima
|1 G:(DE-HGF)POF3-240
|0 G:(DE-HGF)POF3-244
|2 G:(DE-HGF)POF3-200
|v Composition and dynamics of the upper troposphere and middle atmosphere
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J GEOPHYS RES : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-7-20101013
|k IEK-7
|l Stratosphäre
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-7-20101013
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)ICE-4-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21