000850872 001__ 850872
000850872 005__ 20240711085629.0
000850872 0247_ $$2doi$$a10.1016/j.jpowsour.2018.04.059
000850872 0247_ $$2ISSN$$a0378-7753
000850872 0247_ $$2ISSN$$a1873-2755
000850872 0247_ $$2WOS$$aWOS:000440265800001
000850872 037__ $$aFZJ-2018-04623
000850872 082__ $$a620
000850872 1001_ $$0P:(DE-Juel1)171271$$aRossbach, Andreas$$b0$$ufzj
000850872 245__ $$aStructural and transport properties of lithium-conducting NASICON materials
000850872 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2018
000850872 3367_ $$2DRIVER$$aarticle
000850872 3367_ $$2DataCite$$aOutput Types/Journal article
000850872 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1537447231_11414
000850872 3367_ $$2BibTeX$$aARTICLE
000850872 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000850872 3367_ $$00$$2EndNote$$aJournal Article
000850872 520__ $$aLithium-containing NASICON-structured materials are a promising class of solid-state Li-ion conductors for application in electrochemical energy storage devices. Amongst the wide variety of possible compositions the highest conductivities are reported for materials according to the formula Li1+xMx(III)M2−x(IV)(PO4)3, in which the substitution of tetravalent with trivalent metal cations leads to incorporation of additional lithium ions and a higher mobility of the charge carriers.For this study, we surveyed more than 300 research articles about Li-NASICON materials. The relations between composition, structure and conductivity are evaluated to give a comprehensive overview of published data on synthesized compositions. A special focus is laid on Li1+xAlxTi2-x (PO4)3 as the single most conductive and investigated material.The collected conductivities show a wide scattering in a range of 10-10 S cm-1 up to 10-3 S cm-1. The highest values are obtained for materials with M(III) to M(IV) cation ratios of x = 0.3–0.4. Further characteristics for high conductivity are evaluated and the rhombohedral structure as well as cation sizes of around 50–60 p.m. are identified as crucial prerequisites, favoring titanium-based compositions. Considering the evaluated data, selected compositions are suggested for further investigation to support future research.
000850872 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000850872 536__ $$0G:(DE-Juel1)SOFC-20140602$$aSOFC - Solid Oxide Fuel Cell (SOFC-20140602)$$cSOFC-20140602$$fSOFC$$x1
000850872 588__ $$aDataset connected to CrossRef
000850872 7001_ $$0P:(DE-Juel1)129667$$aTietz, Frank$$b1$$ufzj
000850872 7001_ $$0P:(DE-Juel1)167130$$aGrieshammer, Steffen$$b2$$eCorresponding author
000850872 773__ $$0PERI:(DE-600)1491915-1$$a10.1016/j.jpowsour.2018.04.059$$gVol. 391, p. 1 - 9$$p1 - 9$$tJournal of power sources$$v391$$x0378-7753$$y2018
000850872 8564_ $$uhttps://juser.fz-juelich.de/record/850872/files/1-s2.0-S0378775318304026-main.pdf$$yRestricted
000850872 8564_ $$uhttps://juser.fz-juelich.de/record/850872/files/1-s2.0-S0378775318304026-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000850872 909CO $$ooai:juser.fz-juelich.de:850872$$pVDB
000850872 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171271$$aForschungszentrum Jülich$$b0$$kFZJ
000850872 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129667$$aForschungszentrum Jülich$$b1$$kFZJ
000850872 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167130$$aForschungszentrum Jülich$$b2$$kFZJ
000850872 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000850872 9141_ $$y2018
000850872 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ POWER SOURCES : 2015
000850872 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000850872 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000850872 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000850872 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000850872 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000850872 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000850872 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000850872 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000850872 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000850872 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000850872 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000850872 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ POWER SOURCES : 2015
000850872 920__ $$lyes
000850872 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000850872 980__ $$ajournal
000850872 980__ $$aVDB
000850872 980__ $$aI:(DE-Juel1)IEK-1-20101013
000850872 980__ $$aUNRESTRICTED
000850872 981__ $$aI:(DE-Juel1)IMD-2-20101013