Journal Article FZJ-2018-04623

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Structural and transport properties of lithium-conducting NASICON materials

 ;  ;

2018
Elsevier New York, NY [u.a.]

Journal of power sources 391, 1 - 9 () [10.1016/j.jpowsour.2018.04.059]

This record in other databases:    

Please use a persistent id in citations: doi:

Abstract: Lithium-containing NASICON-structured materials are a promising class of solid-state Li-ion conductors for application in electrochemical energy storage devices. Amongst the wide variety of possible compositions the highest conductivities are reported for materials according to the formula Li1+xMx(III)M2−x(IV)(PO4)3, in which the substitution of tetravalent with trivalent metal cations leads to incorporation of additional lithium ions and a higher mobility of the charge carriers.For this study, we surveyed more than 300 research articles about Li-NASICON materials. The relations between composition, structure and conductivity are evaluated to give a comprehensive overview of published data on synthesized compositions. A special focus is laid on Li1+xAlxTi2-x (PO4)3 as the single most conductive and investigated material.The collected conductivities show a wide scattering in a range of 10-10 S cm-1 up to 10-3 S cm-1. The highest values are obtained for materials with M(III) to M(IV) cation ratios of x = 0.3–0.4. Further characteristics for high conductivity are evaluated and the rhombohedral structure as well as cation sizes of around 50–60 p.m. are identified as crucial prerequisites, favoring titanium-based compositions. Considering the evaluated data, selected compositions are suggested for further investigation to support future research.

Classification:

Contributing Institute(s):
  1. Werkstoffsynthese und Herstellungsverfahren (IEK-1)
Research Program(s):
  1. 131 - Electrochemical Storage (POF3-131) (POF3-131)
  2. SOFC - Solid Oxide Fuel Cell (SOFC-20140602) (SOFC-20140602)

Appears in the scientific report 2018
Database coverage:
Medline ; Current Contents - Engineering, Computing and Technology ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; IF >= 5 ; JCR ; NCBI Molecular Biology Database ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IMD > IMD-2
Workflow collections > Public records
IEK > IEK-1
Publications database

 Record created 2018-08-01, last modified 2024-07-11


Restricted:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)