001     850920
005     20240711114057.0
024 7 _ |a 10.1088/1741-4326/aad296
|2 doi
024 7 _ |a 0029-5515
|2 ISSN
024 7 _ |a 1741-4326
|2 ISSN
024 7 _ |a WOS:000440052000001
|2 WOS
024 7 _ |a altmetric:45616664
|2 altmetric
037 _ _ |a FZJ-2018-04654
082 _ _ |a 530
100 1 _ |a Xu, S.
|0 P:(DE-Juel1)171372
|b 0
|e Corresponding author
|u fzj
245 _ _ |a First three-dimensional edge plasma transport simulations with magnetic perturbations induced by lower hybrid waves on EAST
260 _ _ |a Vienna
|c 2018
|b IAEA
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1552414133_13872
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Recent experiments from the Experimental Advanced Superconducting Tokamak (EAST) show that lower hybrid waves (LHWs) can profoundly change the magnetic topology by inducing helical current filaments flowing along magnetic field lines in the scrape-off layer. Here, it is investigated for the first time how these magnetic perturbations caused by LHWs affect the edge plasma transport utilizing the three-dimensional Monte Carlo code EMC3-EIRENE, both in double-null and single-null configurations. The 3D magnetic topology structure is reflected in the plasma properties, due to much stronger parallel field transport compared with cross field diffusion. Good qualitative agreements between simulation results and experimental data from various edge diagnostics demonstrate that the EMC3-EIRENE code now is capable of taking into account the LHW-induced magnetic perturbation fields with both physical and geometrical effects being considered. Combined with experimental observations, the simulation results strongly support that total current amplitude of LHW-induced filaments increases with an increase in LHW input power. It can further deepen the penetration depth of the additional transport channel by extending the stochastic edge layer, and influence the ratio of heat (or particle) flux between split striated and original strike line on divertor targets. The 3D simulation results also indicate that the additional plasma transport channel induced by LHWs can significantly cause the redistribution of heat load between inner and outer divertor targets, which could not be found by the field line tracing method in previous works.
536 _ _ |a 174 - Plasma-Wall-Interaction (POF3-174)
|0 G:(DE-HGF)POF3-174
|c POF3-174
|f POF III
|x 0
536 _ _ |a Predictive EMC3-EIRENE modelling and diagnostic interpretation for Wendelstein 7-X and EAST (jiek42_20180501)
|0 G:(DE-Juel1)jiek42_20180501
|c jiek42_20180501
|f Predictive EMC3-EIRENE modelling and diagnostic interpretation for Wendelstein 7-X and EAST
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Rack, M.
|0 P:(DE-Juel1)145407
|b 1
700 1 _ |a Liang, Yunfeng
|0 P:(DE-Juel1)130088
|b 2
|e Corresponding author
|u fzj
700 1 _ |a Huang, J.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Jia, M.
|0 P:(DE-Juel1)173884
|b 4
700 1 _ |a Feng, Y.
|0 P:(DE-Juel1)6982
|b 5
700 1 _ |a Cosfeld, J.
|0 P:(DE-Juel1)167468
|b 6
|u fzj
700 1 _ |a Zhang, H.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Liu, S.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Gao, Yu
|0 P:(DE-Juel1)161317
|b 9
|u fzj
700 1 _ |a Gan, K.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Feng, W.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Wang, L.
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Zholobenko, W.
|0 P:(DE-Juel1)171409
|b 13
700 1 _ |a Reiter, D.
|0 P:(DE-Juel1)5006
|b 14
|u fzj
773 _ _ |a 10.1088/1741-4326/aad296
|g Vol. 58, no. 10, p. 106008 -
|0 PERI:(DE-600)2037980-8
|n 10
|p 106008 -
|t Nuclear fusion
|v 58
|y 2018
|x 1741-4326
856 4 _ |u https://juser.fz-juelich.de/record/850920/files/8102722_0.pdf
856 4 _ |u https://juser.fz-juelich.de/record/850920/files/Xu_2018_Nucl._Fusion_58_106008.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/850920/files/8102722_0.gif?subformat=icon
|x icon
856 4 _ |u https://juser.fz-juelich.de/record/850920/files/8102722_0.jpg?subformat=icon-1440
|x icon-1440
856 4 _ |u https://juser.fz-juelich.de/record/850920/files/8102722_0.jpg?subformat=icon-180
|x icon-180
856 4 _ |u https://juser.fz-juelich.de/record/850920/files/8102722_0.jpg?subformat=icon-640
|x icon-640
856 4 _ |u https://juser.fz-juelich.de/record/850920/files/8102722_0.pdf?subformat=pdfa
|x pdfa
856 4 _ |u https://juser.fz-juelich.de/record/850920/files/Xu_2018_Nucl._Fusion_58_106008.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/850920/files/Xu_2018_Nucl._Fusion_58_106008.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/850920/files/Xu_2018_Nucl._Fusion_58_106008.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/850920/files/Xu_2018_Nucl._Fusion_58_106008.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/850920/files/Xu_2018_Nucl._Fusion_58_106008.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:850920
|p VDB
|p OpenAPC
|p openCost
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)171372
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)145407
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130088
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)173884
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)167468
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 7
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)161317
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 14
|6 P:(DE-Juel1)5006
913 1 _ |a DE-HGF
|l Kernfusion
|1 G:(DE-HGF)POF3-170
|0 G:(DE-HGF)POF3-174
|2 G:(DE-HGF)POF3-100
|v Plasma-Wall-Interaction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NUCL FUSION : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 1
980 1 _ |a APC
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21