000851000 001__ 851000
000851000 005__ 20240610121333.0
000851000 0247_ $$2doi$$a10.1364/OE.26.013985
000851000 0247_ $$2Handle$$a2128/19570
000851000 0247_ $$2pmid$$apmid:29877443
000851000 0247_ $$2WOS$$aWOS:000433333700026
000851000 0247_ $$2altmetric$$aaltmetric:42998262
000851000 037__ $$aFZJ-2018-04719
000851000 082__ $$a530
000851000 1001_ $$0P:(DE-HGF)0$$aLedentsov, N. N.$$b0$$eCorresponding author
000851000 245__ $$aRoom-temperature yellow-orange (In,Ga,Al)P–GaP laser diodes grown on (n11) GaAs substrates
000851000 260__ $$aWashington, DC$$bSoc.$$c2018
000851000 3367_ $$2DRIVER$$aarticle
000851000 3367_ $$2DataCite$$aOutput Types/Journal article
000851000 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1533792141_21366
000851000 3367_ $$2BibTeX$$aARTICLE
000851000 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000851000 3367_ $$00$$2EndNote$$aJournal Article
000851000 520__ $$aWe report room temperature injection lasing in the yellow–orange spectral range (599–605 nm) in (AlxGa1–x)0.5In0.5P–GaAs diodes with 4 layers of tensile-strained InyGa1–yP quantum dot-like insertions. The wafers were grown by metal–organic vapor phase epitaxy side-by-side on (811), (211) and (322) GaAs substrates tilted towards the <111> direction with respect to the (100) surface. Four sheets of GaP-rich quantum barrier insertions were applied to suppress leakage of non-equilibrium electrons from the gain medium. Laser diodes having a threshold current densities of ~7–10 kA/cm2 at room temperature were realized for both (211) and (322) surface orientations at cavity lengths of ~1mm. Emission wavelength at room temperature ~600 nm is shorter by ~8 nm than previously reported. As an opposite example, the devices grown on (811) GaAs substrates did not show lasing at room temperature.
000851000 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000851000 588__ $$aDataset connected to CrossRef
000851000 7001_ $$0P:(DE-HGF)0$$aShchukin, V. A.$$b1
000851000 7001_ $$0P:(DE-HGF)0$$aShernyakov, Yu. M.$$b2
000851000 7001_ $$0P:(DE-HGF)0$$aKulagina, M. M.$$b3
000851000 7001_ $$0P:(DE-HGF)0$$aPayusov, A. S.$$b4
000851000 7001_ $$0P:(DE-HGF)0$$aGordeev, N. Yu.$$b5
000851000 7001_ $$0P:(DE-HGF)0$$aMaximov, M. V.$$b6
000851000 7001_ $$0P:(DE-HGF)0$$aZhukov, A. E.$$b7
000851000 7001_ $$0P:(DE-Juel1)172928$$aDenneulin, T.$$b8
000851000 7001_ $$00000-0002-0322-0864$$aCherkashin, N.$$b9
000851000 773__ $$0PERI:(DE-600)1491859-6$$a10.1364/OE.26.013985$$gVol. 26, no. 11, p. 13985 -$$n11$$p13985-13994$$tOptics express$$v26$$x1094-4087$$y2018
000851000 8564_ $$uhttps://juser.fz-juelich.de/record/851000/files/oe-26-11-13985.pdf$$yOpenAccess
000851000 8564_ $$uhttps://juser.fz-juelich.de/record/851000/files/oe-26-11-13985.gif?subformat=icon$$xicon$$yOpenAccess
000851000 8564_ $$uhttps://juser.fz-juelich.de/record/851000/files/oe-26-11-13985.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000851000 8564_ $$uhttps://juser.fz-juelich.de/record/851000/files/oe-26-11-13985.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000851000 8564_ $$uhttps://juser.fz-juelich.de/record/851000/files/oe-26-11-13985.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000851000 8564_ $$uhttps://juser.fz-juelich.de/record/851000/files/oe-26-11-13985.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000851000 909CO $$ooai:juser.fz-juelich.de:851000$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000851000 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172928$$aForschungszentrum Jülich$$b8$$kFZJ
000851000 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000851000 9141_ $$y2018
000851000 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000851000 915__ $$0LIC:(DE-HGF)PublisherOA$$2HGFVOC$$aFree to read
000851000 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bOPT EXPRESS : 2015
000851000 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000851000 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000851000 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000851000 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000851000 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000851000 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000851000 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000851000 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000851000 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000851000 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000851000 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000851000 920__ $$lyes
000851000 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x0
000851000 9801_ $$aFullTexts
000851000 980__ $$ajournal
000851000 980__ $$aVDB
000851000 980__ $$aUNRESTRICTED
000851000 980__ $$aI:(DE-Juel1)PGI-5-20110106
000851000 981__ $$aI:(DE-Juel1)ER-C-1-20170209