000851054 001__ 851054
000851054 005__ 20240313103118.0
000851054 0247_ $$2doi$$a10.3389/fninf.2018.00050
000851054 0247_ $$2Handle$$a2128/19883
000851054 0247_ $$2pmid$$apmid:30349471
000851054 0247_ $$2WOS$$aWOS:000446628400001
000851054 0247_ $$2altmetric$$aaltmetric:50021643
000851054 037__ $$aFZJ-2018-04767
000851054 082__ $$a610
000851054 1001_ $$0P:(DE-Juel1)166002$$aBlundell, Inga$$b0$$eCorresponding author
000851054 245__ $$aAutomatically Selecting a Suitable Integration Scheme for Systems of Differential Equations in Neuron Models
000851054 260__ $$aLausanne$$bFrontiers Research Foundation$$c2018
000851054 3367_ $$2DRIVER$$aarticle
000851054 3367_ $$2DataCite$$aOutput Types/Journal article
000851054 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1563261719_618
000851054 3367_ $$2BibTeX$$aARTICLE
000851054 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000851054 3367_ $$00$$2EndNote$$aJournal Article
000851054 520__ $$aOn the level of the spiking activity, the integrate-and-fire neuron is one of the most commonly used descriptions of neural activity. A multitude of variants has been proposed to cope with the huge diversity of behaviors observed in biological nerve cells. The main appeal of this class of model is that it can be defined in terms of a hybrid model, where a set of mathematical equations describes the sub-threshold dynamics of the membrane potential and the generation of action potentials is often only added algorithmically without the shape of spikes being part of the equations. In contrast to more detailed biophysical models, this simple description of neuron models allows the routine simulation of large biological neuronal networks on standard hardware widely available in most laboratories these days. The time evolution of the relevant state variables is usually defined by a small set of ordinary differential equations (ODEs). A small number of evolution schemes for the corresponding systems of ODEs are commonly used for many neuron models, and form the basis of the neuron model implementations built into commonly used simulators like Brian, NEST and NEURON. However, an often neglected problem is that the implemented evolution schemes are only rarely selected through a structured process based on numerical criteria. This practice cannot guarantee accurate and stable solutions for the equations and the actual quality of the solution depends largely on the parametrization of the model. In this article, we give an overview of typical equations and state descriptions for the dynamics of the relevant variables in integrate-and-fire models. We then describe a formal mathematical process to automate the design or selection of a suitable evolution scheme for this large class of models. Finally, we present the reference implementation of our symbolic analysis toolbox for ODEs that can guide modelers during the implementation of custom neuron models.
000851054 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000851054 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x1
000851054 536__ $$0G:(DE-Juel1)HGF-SMHB-2013-2017$$aSMHB - Supercomputing and Modelling for the Human Brain (HGF-SMHB-2013-2017)$$cHGF-SMHB-2013-2017$$fSMHB$$x2
000851054 536__ $$0G:(EU-Grant)720270$$aHBP SGA1 - Human Brain Project Specific Grant Agreement 1 (720270)$$c720270$$fH2020-Adhoc-2014-20$$x3
000851054 536__ $$0G:(DE-Juel1)NESTML-20141210$$aNESTML - A modelling language for spiking neuron and synapse models for NEST (NESTML-20141210)$$cNESTML-20141210$$fA modelling language for spiking neuron and synapse models for NEST$$x4
000851054 536__ $$0G:(DE-Juel1)Helmholtz-SLNS$$aSLNS - SimLab Neuroscience (Helmholtz-SLNS)$$cHelmholtz-SLNS$$x5
000851054 588__ $$aDataset connected to CrossRef
000851054 7001_ $$0P:(DE-Juel1)169429$$aPlotnikov, Dimitri$$b1
000851054 7001_ $$0P:(DE-Juel1)142538$$aEppler, Jochen M.$$b2
000851054 7001_ $$0P:(DE-Juel1)151166$$aMorrison, Abigail$$b3
000851054 773__ $$0PERI:(DE-600)2452979-5$$a10.3389/fninf.2018.00050$$gVol. 12, p. 50$$p50$$tFrontiers in neuroinformatics$$v12$$x1662-5196$$y2018
000851054 8564_ $$uhttps://juser.fz-juelich.de/record/851054/files/2017-0101762-5.pdf
000851054 8564_ $$uhttps://juser.fz-juelich.de/record/851054/files/2017-0101762-5.gif?subformat=icon$$xicon
000851054 8564_ $$uhttps://juser.fz-juelich.de/record/851054/files/2017-0101762-5.jpg?subformat=icon-1440$$xicon-1440
000851054 8564_ $$uhttps://juser.fz-juelich.de/record/851054/files/2017-0101762-5.jpg?subformat=icon-180$$xicon-180
000851054 8564_ $$uhttps://juser.fz-juelich.de/record/851054/files/2017-0101762-5.jpg?subformat=icon-640$$xicon-640
000851054 8564_ $$uhttps://juser.fz-juelich.de/record/851054/files/fninf-12-00050.pdf$$yOpenAccess
000851054 8564_ $$uhttps://juser.fz-juelich.de/record/851054/files/fninf-12-00050.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000851054 8767_ $$82017-0101762-5$$92018-08-06$$d2018-08-10$$eAPC$$jDeposit$$lDeposit: Frontiers$$z2241.00 USD
000851054 909CO $$ooai:juser.fz-juelich.de:851054$$pdnbdelivery$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000851054 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166002$$aForschungszentrum Jülich$$b0$$kFZJ
000851054 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169429$$aForschungszentrum Jülich$$b1$$kFZJ
000851054 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142538$$aForschungszentrum Jülich$$b2$$kFZJ
000851054 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151166$$aForschungszentrum Jülich$$b3$$kFZJ
000851054 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000851054 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x1
000851054 9141_ $$y2018
000851054 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000851054 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000851054 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000851054 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT NEUROINFORM : 2015
000851054 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000851054 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000851054 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000851054 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000851054 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000851054 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000851054 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000851054 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000851054 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
000851054 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x1
000851054 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x2
000851054 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x3
000851054 9801_ $$aAPC
000851054 9801_ $$aFullTexts
000851054 980__ $$ajournal
000851054 980__ $$aVDB
000851054 980__ $$aI:(DE-Juel1)INM-6-20090406
000851054 980__ $$aI:(DE-Juel1)JSC-20090406
000851054 980__ $$aI:(DE-82)080012_20140620
000851054 980__ $$aI:(DE-Juel1)IAS-6-20130828
000851054 980__ $$aAPC
000851054 980__ $$aUNRESTRICTED
000851054 981__ $$aI:(DE-Juel1)IAS-6-20130828