000851347 001__ 851347
000851347 005__ 20240708133125.0
000851347 0247_ $$2doi$$a10.1016/j.ijhydene.2018.11.039
000851347 0247_ $$2ISSN$$a0360-3199
000851347 0247_ $$2ISSN$$a1879-3487
000851347 0247_ $$2Handle$$a2128/22489
000851347 0247_ $$2WOS$$aWOS:000477092000032
000851347 037__ $$aFZJ-2018-05032
000851347 082__ $$a660
000851347 1001_ $$0P:(DE-HGF)0$$aKaraoglan, Mustafa Umut$$b0$$eCorresponding author
000851347 245__ $$aSimulation of Hybrid Vehicle Powertrain with Direct Methanol Fuel Cell System by Semi-Theoretical Approach
000851347 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2019
000851347 3367_ $$2DRIVER$$aarticle
000851347 3367_ $$2DataCite$$aOutput Types/Journal article
000851347 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1563199066_11237
000851347 3367_ $$2BibTeX$$aARTICLE
000851347 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000851347 3367_ $$00$$2EndNote$$aJournal Article
000851347 520__ $$aDifferent operating scenarios can be used in a hybrid system based on a direct methanol fuel cell (DMFC) and a battery. In this paper, a DMFC system model is integrated into a model formed for a hybrid vehicular system that consists of a battery, a DMFC stack and its auxiliary equipments; and the model is simulated in Matlab/Simulink environment using a quasistatic approach. An algorithm for the energy management of the system is also developed considering the state of charge (SOC) of the battery. In the DMFC system model, the current and empirical data for the polarization curves as well as methanol crossover and water crossover rates are taken as the input parameters, whereas the stack voltage, the remaining methanol in the fuel tank, and the power demand of auxiliary equipments are taken as the output parameters. In this model, the methanol consumption, and the water and CO2 production are found applying mass balances for each component of the system. The results of the simulations help to give more insights into the operation of a DMFC based hybrid system.
000851347 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000851347 588__ $$aDataset connected to CrossRef
000851347 7001_ $$0P:(DE-HGF)0$$aInce, Alper Can$$b1
000851347 7001_ $$0P:(DE-HGF)0$$aColpan, Can Özgür$$b2
000851347 7001_ $$0P:(DE-Juel1)129851$$aGlüsen, Andreas$$b3
000851347 7001_ $$0P:(DE-HGF)0$$aKuralay, Nusret Sefa$$b4
000851347 7001_ $$0P:(DE-Juel1)129892$$aMüller, Martin$$b5
000851347 7001_ $$0P:(DE-Juel1)129928$$aStolten, Detlef$$b6
000851347 773__ $$0PERI:(DE-600)1484487-4$$a10.1016/j.ijhydene.2018.11.039$$gp. S0360319918335870$$n34$$p18981-18992$$tInternational journal of hydrogen energy$$v44$$x0360-3199$$y2019
000851347 8564_ $$uhttps://juser.fz-juelich.de/record/851347/files/karaoglan_et_al-IJHE-final%20draft%20post%20refereeing.pdf$$yPublished on 2018-11-29. Available in OpenAccess from 2020-11-29.
000851347 8564_ $$uhttps://juser.fz-juelich.de/record/851347/files/karaoglan_et_al-IJHE-final%20draft%20post%20refereeing.pdf?subformat=pdfa$$xpdfa$$yPublished on 2018-11-29. Available in OpenAccess from 2020-11-29.
000851347 909CO $$ooai:juser.fz-juelich.de:851347$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000851347 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129851$$aForschungszentrum Jülich$$b3$$kFZJ
000851347 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129892$$aForschungszentrum Jülich$$b5$$kFZJ
000851347 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129928$$aForschungszentrum Jülich$$b6$$kFZJ
000851347 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129928$$aRWTH Aachen$$b6$$kRWTH
000851347 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000851347 9141_ $$y2019
000851347 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000851347 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000851347 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000851347 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000851347 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J HYDROGEN ENERG : 2015
000851347 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000851347 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000851347 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000851347 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000851347 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000851347 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000851347 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000851347 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000851347 920__ $$lyes
000851347 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lElektrochemische Verfahrenstechnik$$x0
000851347 9801_ $$aFullTexts
000851347 980__ $$ajournal
000851347 980__ $$aVDB
000851347 980__ $$aUNRESTRICTED
000851347 980__ $$aI:(DE-Juel1)IEK-3-20101013
000851347 981__ $$aI:(DE-Juel1)ICE-2-20101013