001     851347
005     20240708133125.0
024 7 _ |a 10.1016/j.ijhydene.2018.11.039
|2 doi
024 7 _ |a 0360-3199
|2 ISSN
024 7 _ |a 1879-3487
|2 ISSN
024 7 _ |a 2128/22489
|2 Handle
024 7 _ |a WOS:000477092000032
|2 WOS
037 _ _ |a FZJ-2018-05032
082 _ _ |a 660
100 1 _ |a Karaoglan, Mustafa Umut
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Simulation of Hybrid Vehicle Powertrain with Direct Methanol Fuel Cell System by Semi-Theoretical Approach
260 _ _ |a New York, NY [u.a.]
|c 2019
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1563199066_11237
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Different operating scenarios can be used in a hybrid system based on a direct methanol fuel cell (DMFC) and a battery. In this paper, a DMFC system model is integrated into a model formed for a hybrid vehicular system that consists of a battery, a DMFC stack and its auxiliary equipments; and the model is simulated in Matlab/Simulink environment using a quasistatic approach. An algorithm for the energy management of the system is also developed considering the state of charge (SOC) of the battery. In the DMFC system model, the current and empirical data for the polarization curves as well as methanol crossover and water crossover rates are taken as the input parameters, whereas the stack voltage, the remaining methanol in the fuel tank, and the power demand of auxiliary equipments are taken as the output parameters. In this model, the methanol consumption, and the water and CO2 production are found applying mass balances for each component of the system. The results of the simulations help to give more insights into the operation of a DMFC based hybrid system.
536 _ _ |a 135 - Fuel Cells (POF3-135)
|0 G:(DE-HGF)POF3-135
|c POF3-135
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Ince, Alper Can
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Colpan, Can Özgür
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Glüsen, Andreas
|0 P:(DE-Juel1)129851
|b 3
700 1 _ |a Kuralay, Nusret Sefa
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Müller, Martin
|0 P:(DE-Juel1)129892
|b 5
700 1 _ |a Stolten, Detlef
|0 P:(DE-Juel1)129928
|b 6
773 _ _ |a 10.1016/j.ijhydene.2018.11.039
|g p. S0360319918335870
|0 PERI:(DE-600)1484487-4
|n 34
|p 18981-18992
|t International journal of hydrogen energy
|v 44
|y 2019
|x 0360-3199
856 4 _ |y Published on 2018-11-29. Available in OpenAccess from 2020-11-29.
|u https://juser.fz-juelich.de/record/851347/files/karaoglan_et_al-IJHE-final%20draft%20post%20refereeing.pdf
856 4 _ |y Published on 2018-11-29. Available in OpenAccess from 2020-11-29.
|x pdfa
|u https://juser.fz-juelich.de/record/851347/files/karaoglan_et_al-IJHE-final%20draft%20post%20refereeing.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:851347
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129851
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129892
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129928
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 6
|6 P:(DE-Juel1)129928
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-135
|2 G:(DE-HGF)POF3-100
|v Fuel Cells
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J HYDROGEN ENERG : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-3-20101013
|k IEK-3
|l Elektrochemische Verfahrenstechnik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-3-20101013
981 _ _ |a I:(DE-Juel1)ICE-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21