000851526 001__ 851526
000851526 005__ 20240708132857.0
000851526 0247_ $$2doi$$a10.1016/j.jmatprotec.2018.07.008
000851526 0247_ $$2ISSN$$a0924-0136
000851526 0247_ $$2ISSN$$a1873-4774
000851526 0247_ $$2Handle$$a2128/19653
000851526 0247_ $$2WOS$$aWOS:000445986900032
000851526 037__ $$aFZJ-2018-05152
000851526 082__ $$a670
000851526 1001_ $$0P:(DE-Juel1)164315$$aLaptev, Alexander M.$$b0$$eCorresponding author
000851526 245__ $$aEnhancing efficiency of field assisted sintering by advanced thermal insulation
000851526 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2018
000851526 3367_ $$2DRIVER$$aarticle
000851526 3367_ $$2DataCite$$aOutput Types/Journal article
000851526 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1536325314_27185
000851526 3367_ $$2BibTeX$$aARTICLE
000851526 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000851526 3367_ $$00$$2EndNote$$aJournal Article
000851526 520__ $$aThe influence of advanced thermal insulation on energy consumption and temperature distribution during electric field assisted sintering of conductive stainless steel powder and non-conductive zirconia powder was investigated. Four types of tool setup were considered: i) without insulation, ii) with die wall insulation, iii) with additional insulation of die faces and iv) with spacers manufactured from carbon fiber reinforced carbon composite (CFRC). The influence of thermal insulation on energy consumption was experimentally studied for samples with diameter of 17 mm. The temperature distribution in samples with diameters of 17 mm, 50 mm and 150 mm was modeled using the Finite Element Method. The power consumed during dwell was almost half the value when die wall insulation was used. The additional insulation of die faces and the application of CFRC spacers provide a threefold decrease in power during sintering of steel powder and a fivefold reduction during sintering of zirconia powder. The advanced thermal insulation significantly homogenizes the temperature distribution within samples of small and medium size. The advanced thermal insulation provides a strong decrease in the temperature gradient inside large conductive sample with a diameter of 150 mm. However, insulation apparently cannot ensure acceptable temperature homogeneity within non-conductive parts of such diameter. The reason for this is the specific current path and related heat concentration near the sample edge.
000851526 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000851526 588__ $$aDataset connected to CrossRef
000851526 7001_ $$0P:(DE-Juel1)129591$$aBram, Martin$$b1$$ufzj
000851526 7001_ $$00000-0001-5189-7055$$aVanmeensel, Kim$$b2
000851526 7001_ $$0P:(DE-Juel1)162271$$aGonzalez-Julian, Jesus$$b3$$ufzj
000851526 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b4$$ufzj
000851526 773__ $$0PERI:(DE-600)2012658-X$$a10.1016/j.jmatprotec.2018.07.008$$gVol. 262, p. 326 - 339$$p326 - 339$$tJournal of materials processing technology$$v262$$x0924-0136$$y2018
000851526 8564_ $$uhttps://juser.fz-juelich.de/record/851526/files/JMPT_2018_262_326-339_Laptev%20et%20al.pdf$$yPublished on 2018-07-07. Available in OpenAccess from 2020-07-07.
000851526 8564_ $$uhttps://juser.fz-juelich.de/record/851526/files/JMPT_2018_262_326-339_Laptev%20et%20al.gif?subformat=icon$$xicon$$yPublished on 2018-07-07. Available in OpenAccess from 2020-07-07.
000851526 8564_ $$uhttps://juser.fz-juelich.de/record/851526/files/JMPT_2018_262_326-339_Laptev%20et%20al.jpg?subformat=icon-1440$$xicon-1440$$yPublished on 2018-07-07. Available in OpenAccess from 2020-07-07.
000851526 8564_ $$uhttps://juser.fz-juelich.de/record/851526/files/JMPT_2018_262_326-339_Laptev%20et%20al.jpg?subformat=icon-180$$xicon-180$$yPublished on 2018-07-07. Available in OpenAccess from 2020-07-07.
000851526 8564_ $$uhttps://juser.fz-juelich.de/record/851526/files/JMPT_2018_262_326-339_Laptev%20et%20al.jpg?subformat=icon-640$$xicon-640$$yPublished on 2018-07-07. Available in OpenAccess from 2020-07-07.
000851526 8564_ $$uhttps://juser.fz-juelich.de/record/851526/files/JMPT_2018_262_326-339_Laptev%20et%20al.pdf?subformat=pdfa$$xpdfa$$yPublished on 2018-07-07. Available in OpenAccess from 2020-07-07.
000851526 909CO $$ooai:juser.fz-juelich.de:851526$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000851526 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164315$$aForschungszentrum Jülich$$b0$$kFZJ
000851526 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129591$$aForschungszentrum Jülich$$b1$$kFZJ
000851526 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162271$$aForschungszentrum Jülich$$b3$$kFZJ
000851526 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b4$$kFZJ
000851526 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000851526 9141_ $$y2018
000851526 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000851526 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000851526 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000851526 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000851526 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MATER PROCESS TECH : 2015
000851526 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000851526 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000851526 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000851526 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000851526 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000851526 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000851526 9801_ $$aFullTexts
000851526 980__ $$ajournal
000851526 980__ $$aVDB
000851526 980__ $$aUNRESTRICTED
000851526 980__ $$aI:(DE-Juel1)IEK-1-20101013
000851526 981__ $$aI:(DE-Juel1)IMD-2-20101013