001     851526
005     20240708132857.0
024 7 _ |a 10.1016/j.jmatprotec.2018.07.008
|2 doi
024 7 _ |a 0924-0136
|2 ISSN
024 7 _ |a 1873-4774
|2 ISSN
024 7 _ |a 2128/19653
|2 Handle
024 7 _ |a WOS:000445986900032
|2 WOS
037 _ _ |a FZJ-2018-05152
082 _ _ |a 670
100 1 _ |a Laptev, Alexander M.
|0 P:(DE-Juel1)164315
|b 0
|e Corresponding author
245 _ _ |a Enhancing efficiency of field assisted sintering by advanced thermal insulation
260 _ _ |a Amsterdam [u.a.]
|c 2018
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1536325314_27185
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The influence of advanced thermal insulation on energy consumption and temperature distribution during electric field assisted sintering of conductive stainless steel powder and non-conductive zirconia powder was investigated. Four types of tool setup were considered: i) without insulation, ii) with die wall insulation, iii) with additional insulation of die faces and iv) with spacers manufactured from carbon fiber reinforced carbon composite (CFRC). The influence of thermal insulation on energy consumption was experimentally studied for samples with diameter of 17 mm. The temperature distribution in samples with diameters of 17 mm, 50 mm and 150 mm was modeled using the Finite Element Method. The power consumed during dwell was almost half the value when die wall insulation was used. The additional insulation of die faces and the application of CFRC spacers provide a threefold decrease in power during sintering of steel powder and a fivefold reduction during sintering of zirconia powder. The advanced thermal insulation significantly homogenizes the temperature distribution within samples of small and medium size. The advanced thermal insulation provides a strong decrease in the temperature gradient inside large conductive sample with a diameter of 150 mm. However, insulation apparently cannot ensure acceptable temperature homogeneity within non-conductive parts of such diameter. The reason for this is the specific current path and related heat concentration near the sample edge.
536 _ _ |a 899 - ohne Topic (POF3-899)
|0 G:(DE-HGF)POF3-899
|c POF3-899
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Bram, Martin
|0 P:(DE-Juel1)129591
|b 1
|u fzj
700 1 _ |a Vanmeensel, Kim
|0 0000-0001-5189-7055
|b 2
700 1 _ |a Gonzalez-Julian, Jesus
|0 P:(DE-Juel1)162271
|b 3
|u fzj
700 1 _ |a Guillon, Olivier
|0 P:(DE-Juel1)161591
|b 4
|u fzj
773 _ _ |a 10.1016/j.jmatprotec.2018.07.008
|g Vol. 262, p. 326 - 339
|0 PERI:(DE-600)2012658-X
|p 326 - 339
|t Journal of materials processing technology
|v 262
|y 2018
|x 0924-0136
856 4 _ |y Published on 2018-07-07. Available in OpenAccess from 2020-07-07.
|u https://juser.fz-juelich.de/record/851526/files/JMPT_2018_262_326-339_Laptev%20et%20al.pdf
856 4 _ |y Published on 2018-07-07. Available in OpenAccess from 2020-07-07.
|x icon
|u https://juser.fz-juelich.de/record/851526/files/JMPT_2018_262_326-339_Laptev%20et%20al.gif?subformat=icon
856 4 _ |y Published on 2018-07-07. Available in OpenAccess from 2020-07-07.
|x icon-1440
|u https://juser.fz-juelich.de/record/851526/files/JMPT_2018_262_326-339_Laptev%20et%20al.jpg?subformat=icon-1440
856 4 _ |y Published on 2018-07-07. Available in OpenAccess from 2020-07-07.
|x icon-180
|u https://juser.fz-juelich.de/record/851526/files/JMPT_2018_262_326-339_Laptev%20et%20al.jpg?subformat=icon-180
856 4 _ |y Published on 2018-07-07. Available in OpenAccess from 2020-07-07.
|x icon-640
|u https://juser.fz-juelich.de/record/851526/files/JMPT_2018_262_326-339_Laptev%20et%20al.jpg?subformat=icon-640
856 4 _ |y Published on 2018-07-07. Available in OpenAccess from 2020-07-07.
|x pdfa
|u https://juser.fz-juelich.de/record/851526/files/JMPT_2018_262_326-339_Laptev%20et%20al.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:851526
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)164315
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129591
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)162271
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)161591
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF3-890
|0 G:(DE-HGF)POF3-899
|2 G:(DE-HGF)POF3-800
|v ohne Topic
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J MATER PROCESS TECH : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21