000851648 001__ 851648
000851648 005__ 20210129234952.0
000851648 0247_ $$2doi$$a10.1109/TED.2018.2849872
000851648 0247_ $$2ISSN$$a0018-9383
000851648 0247_ $$2ISSN$$a0096-2430
000851648 0247_ $$2ISSN$$a0197-6370
000851648 0247_ $$2ISSN$$a1557-9646
000851648 0247_ $$2WOS$$aWOS:000439649900021
000851648 037__ $$aFZJ-2018-05198
000851648 082__ $$a620
000851648 1001_ $$0P:(DE-Juel1)165704$$aHardtdegen, Alexander$$b0$$eCorresponding author
000851648 245__ $$aImproved Switching Stability and the Effect of an Internal Series Resistor in HfO 2 /TiO x Bilayer ReRAM Cells
000851648 260__ $$aNew York, NY$$bIEEE$$c2018
000851648 3367_ $$2DRIVER$$aarticle
000851648 3367_ $$2DataCite$$aOutput Types/Journal article
000851648 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1557381624_24088
000851648 3367_ $$2BibTeX$$aARTICLE
000851648 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000851648 3367_ $$00$$2EndNote$$aJournal Article
000851648 520__ $$aBipolar redox-based resistive random-access memory cells are intensively studied for new storage class memory and beyond von Neumann computing applications. However, the considerable variability of the resistance values in ON and OFF state as well as of the SET voltage remains challenging. In this paper, we discuss the physical origin of the significant reduction in the switching variability of HfO 2 -based devices achieved by the insertion of a thin TiOx layer between the HfO 2 layer and the oxygen exchange metal layer. Typically, HfO 2 single layer cells exhibit an abrupt SET process, which is difficult to control. In contrast, self-compliance effects in the HfO 2 /TiO x bilayer devices lead to an increased stability of SET voltages and OFF-state resistances. The SET process is gradual and the RESET becomes abrupt for higher switching currents. Comparison of the experimental data with simulation results achieved from a physics-based compact model for the full description of the switching behavior of the single layer and bilayer devices clearly reveal three major effects. The TiO x layer affects the temperature distribution during switching (by modifying the heat dissipation), forms an additional series resistance and changes the current conduction mechanism in the OFF state of the bilayer device compared to the single layer device.
000851648 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000851648 588__ $$aDataset connected to CrossRef
000851648 7001_ $$00000-0003-1874-9864$$aLa Torre, Camilla$$b1$$eCorresponding author
000851648 7001_ $$0P:(DE-Juel1)173924$$aCuppers, Felix$$b2
000851648 7001_ $$0P:(DE-Juel1)158062$$aMenzel, Stephan$$b3
000851648 7001_ $$0P:(DE-Juel1)131022$$aWaser, R.$$b4
000851648 7001_ $$0P:(DE-Juel1)130717$$aHoffmann-Eifert, Susanne$$b5
000851648 773__ $$0PERI:(DE-600)2028088-9$$a10.1109/TED.2018.2849872$$gVol. 65, no. 8, p. 3229 - 3236$$n8$$p3229 - 3236$$tIEEE transactions on electron devices$$v65$$x1557-9646$$y2018
000851648 8564_ $$uhttps://juser.fz-juelich.de/record/851648/files/08405556.pdf$$yRestricted
000851648 8564_ $$uhttps://juser.fz-juelich.de/record/851648/files/08405556.pdf?subformat=pdfa$$xpdfa$$yRestricted
000851648 909CO $$ooai:juser.fz-juelich.de:851648$$pVDB
000851648 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165704$$aForschungszentrum Jülich$$b0$$kFZJ
000851648 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173924$$aForschungszentrum Jülich$$b2$$kFZJ
000851648 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158062$$aForschungszentrum Jülich$$b3$$kFZJ
000851648 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131022$$aForschungszentrum Jülich$$b4$$kFZJ
000851648 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130717$$aForschungszentrum Jülich$$b5$$kFZJ
000851648 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000851648 9141_ $$y2018
000851648 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bIEEE T ELECTRON DEV : 2015
000851648 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000851648 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000851648 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000851648 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000851648 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000851648 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000851648 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000851648 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000851648 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000851648 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000851648 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000851648 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000851648 9201_ $$0I:(DE-Juel1)PGI-10-20170113$$kPGI-10$$lJARA Institut Green IT$$x2
000851648 980__ $$ajournal
000851648 980__ $$aVDB
000851648 980__ $$aI:(DE-Juel1)PGI-7-20110106
000851648 980__ $$aI:(DE-82)080009_20140620
000851648 980__ $$aI:(DE-Juel1)PGI-10-20170113
000851648 980__ $$aUNRESTRICTED