Journal Article FZJ-2018-05198

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Improved Switching Stability and the Effect of an Internal Series Resistor in HfO 2 /TiO x Bilayer ReRAM Cells

 ;  ;  ;  ;  ;

2018
IEEE New York, NY

IEEE transactions on electron devices 65(8), 3229 - 3236 () [10.1109/TED.2018.2849872]

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: Bipolar redox-based resistive random-access memory cells are intensively studied for new storage class memory and beyond von Neumann computing applications. However, the considerable variability of the resistance values in ON and OFF state as well as of the SET voltage remains challenging. In this paper, we discuss the physical origin of the significant reduction in the switching variability of HfO 2 -based devices achieved by the insertion of a thin TiOx layer between the HfO 2 layer and the oxygen exchange metal layer. Typically, HfO 2 single layer cells exhibit an abrupt SET process, which is difficult to control. In contrast, self-compliance effects in the HfO 2 /TiO x bilayer devices lead to an increased stability of SET voltages and OFF-state resistances. The SET process is gradual and the RESET becomes abrupt for higher switching currents. Comparison of the experimental data with simulation results achieved from a physics-based compact model for the full description of the switching behavior of the single layer and bilayer devices clearly reveal three major effects. The TiO x layer affects the temperature distribution during switching (by modifying the heat dissipation), forms an additional series resistance and changes the current conduction mechanism in the OFF state of the bilayer device compared to the single layer device.

Classification:

Contributing Institute(s):
  1. Elektronische Materialien (PGI-7)
  2. JARA-FIT (JARA-FIT)
  3. JARA Institut Green IT (PGI-10)
Research Program(s):
  1. 521 - Controlling Electron Charge-Based Phenomena (POF3-521) (POF3-521)

Appears in the scientific report 2018
Database coverage:
Medline ; Current Contents - Engineering, Computing and Technology ; Ebsco Academic Search ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
JARA > JARA > JARA-JARA\-FIT
Institute Collections > PGI > PGI-10
Institute Collections > PGI > PGI-7
Workflow collections > Public records
Publications database

 Record created 2018-09-06, last modified 2021-01-29


Restricted:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)