001     851648
005     20210129234952.0
024 7 _ |a 10.1109/TED.2018.2849872
|2 doi
024 7 _ |a 0018-9383
|2 ISSN
024 7 _ |a 0096-2430
|2 ISSN
024 7 _ |a 0197-6370
|2 ISSN
024 7 _ |a 1557-9646
|2 ISSN
024 7 _ |a WOS:000439649900021
|2 WOS
037 _ _ |a FZJ-2018-05198
082 _ _ |a 620
100 1 _ |a Hardtdegen, Alexander
|0 P:(DE-Juel1)165704
|b 0
|e Corresponding author
245 _ _ |a Improved Switching Stability and the Effect of an Internal Series Resistor in HfO 2 /TiO x Bilayer ReRAM Cells
260 _ _ |a New York, NY
|c 2018
|b IEEE
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1557381624_24088
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Bipolar redox-based resistive random-access memory cells are intensively studied for new storage class memory and beyond von Neumann computing applications. However, the considerable variability of the resistance values in ON and OFF state as well as of the SET voltage remains challenging. In this paper, we discuss the physical origin of the significant reduction in the switching variability of HfO 2 -based devices achieved by the insertion of a thin TiOx layer between the HfO 2 layer and the oxygen exchange metal layer. Typically, HfO 2 single layer cells exhibit an abrupt SET process, which is difficult to control. In contrast, self-compliance effects in the HfO 2 /TiO x bilayer devices lead to an increased stability of SET voltages and OFF-state resistances. The SET process is gradual and the RESET becomes abrupt for higher switching currents. Comparison of the experimental data with simulation results achieved from a physics-based compact model for the full description of the switching behavior of the single layer and bilayer devices clearly reveal three major effects. The TiO x layer affects the temperature distribution during switching (by modifying the heat dissipation), forms an additional series resistance and changes the current conduction mechanism in the OFF state of the bilayer device compared to the single layer device.
536 _ _ |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|0 G:(DE-HGF)POF3-521
|c POF3-521
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a La Torre, Camilla
|0 0000-0003-1874-9864
|b 1
|e Corresponding author
700 1 _ |a Cuppers, Felix
|0 P:(DE-Juel1)173924
|b 2
700 1 _ |a Menzel, Stephan
|0 P:(DE-Juel1)158062
|b 3
700 1 _ |a Waser, R.
|0 P:(DE-Juel1)131022
|b 4
700 1 _ |a Hoffmann-Eifert, Susanne
|0 P:(DE-Juel1)130717
|b 5
773 _ _ |a 10.1109/TED.2018.2849872
|g Vol. 65, no. 8, p. 3229 - 3236
|0 PERI:(DE-600)2028088-9
|n 8
|p 3229 - 3236
|t IEEE transactions on electron devices
|v 65
|y 2018
|x 1557-9646
856 4 _ |u https://juser.fz-juelich.de/record/851648/files/08405556.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/851648/files/08405556.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |p VDB
|o oai:juser.fz-juelich.de:851648
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)165704
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)173924
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)158062
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)131022
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)130717
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|2 G:(DE-HGF)POF3-500
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b IEEE T ELECTRON DEV : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
920 1 _ |0 I:(DE-Juel1)PGI-10-20170113
|k PGI-10
|l JARA Institut Green IT
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-Juel1)PGI-10-20170113
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21