000851833 001__ 851833
000851833 005__ 20240712113129.0
000851833 0247_ $$2doi$$a10.31300/CTEC.20.2018.1-13
000851833 0247_ $$2Handle$$a2128/22665
000851833 037__ $$aFZJ-2018-05333
000851833 082__ $$a530
000851833 1001_ $$0P:(DE-Juel1)171204$$aCekic-Laskovic, Isidora$$b0$$eCorresponding author
000851833 245__ $$aAcetonitrile-based electrolytes for lithium-ion battery application
000851833 260__ $$aTrivandrum$$bResearch Trends$$c2018
000851833 3367_ $$2DRIVER$$aarticle
000851833 3367_ $$2DataCite$$aOutput Types/Journal article
000851833 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1567767025_16307
000851833 3367_ $$2BibTeX$$aARTICLE
000851833 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000851833 3367_ $$00$$2EndNote$$aJournal Article
000851833 520__ $$aCompared to the commercially used state-of-the art non-aqueous organic carbonate solvent-based electrolytes, acetonitrile (AN)-based electrolytes have the advantage of enabling higher conductivity and lower viscosity values. The beneficial influence of adding fluoroethylene carbonate (FEC), thus enabling AN compatibility with graphite anodes, in different ratios to AN-based electrolytes represents the main focus of this manuscript. Long-term cycling measurements at 0 °C and 20 °C as well as conductivity and electrochemical stability measurements were performed to identify the optimal AN:FEC ratio. The electrochemical performance as well as the decomposition products were further investigated in graphite/lithium iron phosphate (LFP) cells to validate the applicability in lithium-ion cells.
000851833 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000851833 588__ $$aDataset connected to CrossRef
000851833 7001_ $$0P:(DE-HGF)0$$aHilbig, Peter$$b1
000851833 7001_ $$0P:(DE-HGF)0$$aIbing, Lukas$$b2
000851833 7001_ $$0P:(DE-HGF)0$$aStreipert, Benjamin$$b3
000851833 7001_ $$0P:(DE-HGF)0$$aWagner, Ralf$$b4
000851833 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b5
000851833 773__ $$0PERI:(DE-600)2956335-5$$a10.31300/CTEC.20.2018.1-13$$gVol. 20, p. 1 -$$n13$$p1 - 13$$tCurrent topics in electrochemistry$$v20$$x0972-4443$$y2018
000851833 8564_ $$uhttps://juser.fz-juelich.de/record/851833/files/221-18%20Invoice%20RT-EC-182.pdf
000851833 8564_ $$uhttps://juser.fz-juelich.de/record/851833/files/221-18%20Invoice%20RT-EC-182.pdf?subformat=pdfa$$xpdfa
000851833 8564_ $$uhttps://juser.fz-juelich.de/record/851833/files/document%281%29.pdf$$yOpenAccess
000851833 8564_ $$uhttps://juser.fz-juelich.de/record/851833/files/document%281%29.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000851833 8767_ $$8221-18$$92018-09-07$$d2018-09-14$$eHybrid-OA$$jZahlung erfolgt$$pRT/EC/182
000851833 909CO $$ooai:juser.fz-juelich.de:851833$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000851833 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171204$$aForschungszentrum Jülich$$b0$$kFZJ
000851833 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b1$$kExtern
000851833 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b2$$kExtern
000851833 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b5$$kFZJ
000851833 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000851833 9141_ $$y2019
000851833 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000851833 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000851833 9801_ $$aAPC
000851833 9801_ $$aFullTexts
000851833 980__ $$ajournal
000851833 980__ $$aVDB
000851833 980__ $$aUNRESTRICTED
000851833 980__ $$aI:(DE-Juel1)IEK-12-20141217
000851833 980__ $$aAPC
000851833 981__ $$aI:(DE-Juel1)IMD-4-20141217