000852555 001__ 852555
000852555 005__ 20210129235136.0
000852555 037__ $$aFZJ-2018-05475
000852555 041__ $$aEnglish
000852555 1001_ $$0P:(DE-Juel1)138417$$aBelt, Alexander$$b0$$eCorresponding author$$ufzj
000852555 1112_ $$aThird European Symposium on Fire Safety Sciences$$cNancy$$d2018-09-12 - 2018-09-14$$gESFSS2018$$wFrance
000852555 245__ $$aOn the discrepancy of modelling the heat transfer for pure natural convection
000852555 260__ $$c2018
000852555 300__ $$a6
000852555 3367_ $$2ORCID$$aCONFERENCE_PAPER
000852555 3367_ $$033$$2EndNote$$aConference Paper
000852555 3367_ $$2BibTeX$$aINPROCEEDINGS
000852555 3367_ $$2DRIVER$$aconferenceObject
000852555 3367_ $$2DataCite$$aOutput Types/Conference Paper
000852555 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1537947870_3148
000852555 520__ $$aIn the present study, buoyancy driven flow fields in a bench scale apparatus are experimentally invest- igated by means of a non intrusive measurement technique, here the 2D-2C particle image velocimetry (PIV). An electrically heated copper block was used to induce a plume. As the temperature at the surface of the heating source is the main driver for the fluid dynamics, the surface temperature field was measured by thermography. The experimental results are compared to simulations with the Fire Dynamics Simulator (FDS). Simulations with a prescribed, homogeneous distributed surface heat flux and a 3D thermal heat conduction with a volumetric heat source were carried out. The impact of both approaches on the resulting flow fields showed no significant deviations, however, both do not agree with the experimental data. Whereas the surface temperatures of the heating source and its vicinity are in a good agreement for the 3D heat transfer approach. This leads to the conclusion that the modelled heat transfer mechanism does not provide valid predictions in this setup.
000852555 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000852555 7001_ $$0P:(DE-Juel1)173968$$aBöhler, Max$$b1$$ufzj
000852555 7001_ $$0P:(DE-Juel1)165800$$aRommeswinkel, Leonie$$b2
000852555 7001_ $$0P:(DE-Juel1)132044$$aArnold, Lukas$$b3
000852555 8564_ $$uhttps://juser.fz-juelich.de/record/852555/files/2018_ESFSS_Belt_etAl.pdf$$yRestricted
000852555 8564_ $$uhttps://juser.fz-juelich.de/record/852555/files/2018_ESFSS_Belt_etAl.pdf?subformat=pdfa$$xpdfa$$yRestricted
000852555 909CO $$ooai:juser.fz-juelich.de:852555$$pextern4vita
000852555 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138417$$aForschungszentrum Jülich$$b0$$kFZJ
000852555 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173968$$aForschungszentrum Jülich$$b1$$kFZJ
000852555 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132044$$aForschungszentrum Jülich$$b3$$kFZJ
000852555 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000852555 9141_ $$y2018
000852555 920__ $$lyes
000852555 9801_ $$aEXTERN4VITA
000852555 980__ $$acontrib
000852555 980__ $$aUSER
000852555 980__ $$aI:(DE-Juel1)IAS-7-20180321