000852583 001__ 852583
000852583 005__ 20240711113530.0
000852583 0247_ $$2doi$$a10.1016/j.nme.2018.05.003
000852583 0247_ $$2Handle$$a2128/19734
000852583 0247_ $$2WOS$$aWOS:000435611400038
000852583 037__ $$aFZJ-2018-05495
000852583 082__ $$a333.7
000852583 1001_ $$0P:(DE-Juel1)166427$$aKlein, F.$$b0$$eCorresponding author
000852583 245__ $$aOxidation resistance of bulk plasma-facing tungsten alloys
000852583 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2018
000852583 3367_ $$2DRIVER$$aarticle
000852583 3367_ $$2DataCite$$aOutput Types/Journal article
000852583 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1538058655_10333
000852583 3367_ $$2BibTeX$$aARTICLE
000852583 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000852583 3367_ $$00$$2EndNote$$aJournal Article
000852583 520__ $$aTungsten (W) currently is the main candidate as plasma-facing armour material for the first wall of future fusion reactors, like DEMO. Advantages of W include a high melting point, high thermal conductivity, low tritium retention, and low erosion yield. However, in case of an accident, air ingress into the vacuum vessel can occur and the temperature of the first wall can reach 1200 K to 1450 K due to nuclear decay heat. In the absence of cooling, the temperature will remain in that range for several weeks. At these temperatures the radioactive tungsten oxide volatilizes. Therefore, ‘smart’ W alloys are developed that aim to preserve the properties of W during plasma operation coupled with suppressed tungsten oxide formation in case of an accident.This study focusses on oxidation studies at 1273 K of samples produced by mechanical alloying followed by field assisted sintering. In a first step the sintering is optimized for tungsten (W) – chromium (Cr) -yttrium (Y) alloys. It is shown that the best oxidation resistance is achieved with submicron grain sizes. This yields a closed, protective oxide layer. In a second step the influence of the grinding process during sample preparation is analysed. It is shown that scratches initiate failure of the protective oxide. In a third step the oxidation and sublimation is measured for weeks – for the first time the sublimation is directly measured in order to determine the potential hazard in comparison to pure W. It is shown that the oxidation is suppressed in comparison to pure W. However, sublimation at a rate ofstarts after a few days. Nevertheless, the progess in smart alloys is evident: sublimation is delayed by about two days and complete mechanical destruction of the first wall is avoided.
000852583 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000852583 588__ $$aDataset connected to CrossRef
000852583 7001_ $$0P:(DE-Juel1)161367$$aWegener, T.$$b1
000852583 7001_ $$0P:(DE-Juel1)130090$$aLitnovsky, A.$$b2$$ufzj
000852583 7001_ $$0P:(DE-Juel1)162160$$aRasinski, M.$$b3$$ufzj
000852583 7001_ $$0P:(DE-HGF)0$$aTan, X. Y.$$b4
000852583 7001_ $$0P:(DE-Juel1)162271$$aGonzalez-Julian, J.$$b5$$ufzj
000852583 7001_ $$0P:(DE-Juel1)166256$$aSchmitz, J.$$b6
000852583 7001_ $$0P:(DE-Juel1)129591$$aBram, M.$$b7$$ufzj
000852583 7001_ $$0P:(DE-Juel1)2594$$aCoenen, J. W.$$b8
000852583 7001_ $$0P:(DE-Juel1)157640$$aLinsmeier, Ch.$$b9
000852583 773__ $$0PERI:(DE-600)2808888-8$$a10.1016/j.nme.2018.05.003$$gVol. 15, p. 226 - 231$$p226 - 231$$tNuclear materials and energy$$v15$$x2352-1791$$y2018
000852583 8564_ $$uhttps://juser.fz-juelich.de/record/852583/files/1-s2.0-S2352179117301266-main.pdf$$yOpenAccess
000852583 8564_ $$uhttps://juser.fz-juelich.de/record/852583/files/1-s2.0-S2352179117301266-main.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000852583 909CO $$ooai:juser.fz-juelich.de:852583$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000852583 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166427$$aForschungszentrum Jülich$$b0$$kFZJ
000852583 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130090$$aForschungszentrum Jülich$$b2$$kFZJ
000852583 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162160$$aForschungszentrum Jülich$$b3$$kFZJ
000852583 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162271$$aForschungszentrum Jülich$$b5$$kFZJ
000852583 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166256$$aForschungszentrum Jülich$$b6$$kFZJ
000852583 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129591$$aForschungszentrum Jülich$$b7$$kFZJ
000852583 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)2594$$aForschungszentrum Jülich$$b8$$kFZJ
000852583 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157640$$aForschungszentrum Jülich$$b9$$kFZJ
000852583 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000852583 9141_ $$y2018
000852583 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000852583 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000852583 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000852583 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index
000852583 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000852583 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000852583 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000852583 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000852583 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000852583 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x1
000852583 9801_ $$aFullTexts
000852583 980__ $$ajournal
000852583 980__ $$aVDB
000852583 980__ $$aUNRESTRICTED
000852583 980__ $$aI:(DE-Juel1)IEK-4-20101013
000852583 980__ $$aI:(DE-Juel1)IEK-1-20101013
000852583 981__ $$aI:(DE-Juel1)IFN-1-20101013
000852583 981__ $$aI:(DE-Juel1)IMD-2-20101013