000852583 001__ 852583 000852583 005__ 20240711113530.0 000852583 0247_ $$2doi$$a10.1016/j.nme.2018.05.003 000852583 0247_ $$2Handle$$a2128/19734 000852583 0247_ $$2WOS$$aWOS:000435611400038 000852583 037__ $$aFZJ-2018-05495 000852583 082__ $$a333.7 000852583 1001_ $$0P:(DE-Juel1)166427$$aKlein, F.$$b0$$eCorresponding author 000852583 245__ $$aOxidation resistance of bulk plasma-facing tungsten alloys 000852583 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2018 000852583 3367_ $$2DRIVER$$aarticle 000852583 3367_ $$2DataCite$$aOutput Types/Journal article 000852583 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1538058655_10333 000852583 3367_ $$2BibTeX$$aARTICLE 000852583 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000852583 3367_ $$00$$2EndNote$$aJournal Article 000852583 520__ $$aTungsten (W) currently is the main candidate as plasma-facing armour material for the first wall of future fusion reactors, like DEMO. Advantages of W include a high melting point, high thermal conductivity, low tritium retention, and low erosion yield. However, in case of an accident, air ingress into the vacuum vessel can occur and the temperature of the first wall can reach 1200 K to 1450 K due to nuclear decay heat. In the absence of cooling, the temperature will remain in that range for several weeks. At these temperatures the radioactive tungsten oxide volatilizes. Therefore, ‘smart’ W alloys are developed that aim to preserve the properties of W during plasma operation coupled with suppressed tungsten oxide formation in case of an accident.This study focusses on oxidation studies at 1273 K of samples produced by mechanical alloying followed by field assisted sintering. In a first step the sintering is optimized for tungsten (W) – chromium (Cr) -yttrium (Y) alloys. It is shown that the best oxidation resistance is achieved with submicron grain sizes. This yields a closed, protective oxide layer. In a second step the influence of the grinding process during sample preparation is analysed. It is shown that scratches initiate failure of the protective oxide. In a third step the oxidation and sublimation is measured for weeks – for the first time the sublimation is directly measured in order to determine the potential hazard in comparison to pure W. It is shown that the oxidation is suppressed in comparison to pure W. However, sublimation at a rate ofstarts after a few days. Nevertheless, the progess in smart alloys is evident: sublimation is delayed by about two days and complete mechanical destruction of the first wall is avoided. 000852583 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0 000852583 588__ $$aDataset connected to CrossRef 000852583 7001_ $$0P:(DE-Juel1)161367$$aWegener, T.$$b1 000852583 7001_ $$0P:(DE-Juel1)130090$$aLitnovsky, A.$$b2$$ufzj 000852583 7001_ $$0P:(DE-Juel1)162160$$aRasinski, M.$$b3$$ufzj 000852583 7001_ $$0P:(DE-HGF)0$$aTan, X. Y.$$b4 000852583 7001_ $$0P:(DE-Juel1)162271$$aGonzalez-Julian, J.$$b5$$ufzj 000852583 7001_ $$0P:(DE-Juel1)166256$$aSchmitz, J.$$b6 000852583 7001_ $$0P:(DE-Juel1)129591$$aBram, M.$$b7$$ufzj 000852583 7001_ $$0P:(DE-Juel1)2594$$aCoenen, J. W.$$b8 000852583 7001_ $$0P:(DE-Juel1)157640$$aLinsmeier, Ch.$$b9 000852583 773__ $$0PERI:(DE-600)2808888-8$$a10.1016/j.nme.2018.05.003$$gVol. 15, p. 226 - 231$$p226 - 231$$tNuclear materials and energy$$v15$$x2352-1791$$y2018 000852583 8564_ $$uhttps://juser.fz-juelich.de/record/852583/files/1-s2.0-S2352179117301266-main.pdf$$yOpenAccess 000852583 8564_ $$uhttps://juser.fz-juelich.de/record/852583/files/1-s2.0-S2352179117301266-main.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000852583 909CO $$ooai:juser.fz-juelich.de:852583$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000852583 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166427$$aForschungszentrum Jülich$$b0$$kFZJ 000852583 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130090$$aForschungszentrum Jülich$$b2$$kFZJ 000852583 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162160$$aForschungszentrum Jülich$$b3$$kFZJ 000852583 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162271$$aForschungszentrum Jülich$$b5$$kFZJ 000852583 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166256$$aForschungszentrum Jülich$$b6$$kFZJ 000852583 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129591$$aForschungszentrum Jülich$$b7$$kFZJ 000852583 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)2594$$aForschungszentrum Jülich$$b8$$kFZJ 000852583 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157640$$aForschungszentrum Jülich$$b9$$kFZJ 000852583 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0 000852583 9141_ $$y2018 000852583 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000852583 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000852583 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal 000852583 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index 000852583 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000852583 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ 000852583 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000852583 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000852583 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0 000852583 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x1 000852583 9801_ $$aFullTexts 000852583 980__ $$ajournal 000852583 980__ $$aVDB 000852583 980__ $$aUNRESTRICTED 000852583 980__ $$aI:(DE-Juel1)IEK-4-20101013 000852583 980__ $$aI:(DE-Juel1)IEK-1-20101013 000852583 981__ $$aI:(DE-Juel1)IFN-1-20101013 000852583 981__ $$aI:(DE-Juel1)IMD-2-20101013