Home > Publications database > Flow-Induced Transitions of Red Blood Cell Shapes under Shears > print |
001 | 852741 | ||
005 | 20240610115333.0 | ||
024 | 7 | _ | |a 10.1103/PhysRevLett.121.118103 |2 doi |
024 | 7 | _ | |a 0031-9007 |2 ISSN |
024 | 7 | _ | |a 1079-7114 |2 ISSN |
024 | 7 | _ | |a 1092-0145 |2 ISSN |
024 | 7 | _ | |a 2128/19744 |2 Handle |
024 | 7 | _ | |a pmid:30265089 |2 pmid |
024 | 7 | _ | |a WOS:000444586600022 |2 WOS |
024 | 7 | _ | |a altmetric:48428544 |2 altmetric |
037 | _ | _ | |a FZJ-2018-05613 |
082 | _ | _ | |a 550 |
100 | 1 | _ | |a Mauer, Johannes |0 P:(DE-Juel1)157877 |b 0 |
245 | _ | _ | |a Flow-Induced Transitions of Red Blood Cell Shapes under Shears |
260 | _ | _ | |a College Park, Md. |c 2018 |b APS |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1538402244_358 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a A recent study of red blood cells (RBCs) in shear flow [Lanotte et al., Proc. Natl. Acad. Sci. U.S.A. 113, 13289 (2016)] has demonstrated that RBCs first tumble, then roll, transit to a rolling and tumbling stomatocyte, and finally attain polylobed shapes with increasing shear rate, when the viscosity contrast between cytosol and blood plasma is large enough. Using two different simulation techniques, we construct a state diagram of RBC shapes and dynamics in shear flow as a function of shear rate and viscosity contrast, which is also supported by microfluidic experiments. Furthermore, we illustrate the importance of RBC shear elasticity for its dynamics in flow and show that two different kinds of membrane buckling trigger the transition between subsequent RBC states. |
536 | _ | _ | |a 552 - Engineering Cell Function (POF3-552) |0 G:(DE-HGF)POF3-552 |c POF3-552 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Mendez, Simon |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Lanotte, Luca |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Nicoud, Franck |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Abkarian, Manouk |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Gompper, Gerhard |0 P:(DE-Juel1)130665 |b 5 |
700 | 1 | _ | |a Fedosov, Dmitry A. |0 P:(DE-HGF)0 |b 6 |e Corresponding author |
773 | _ | _ | |a 10.1103/PhysRevLett.121.118103 |g Vol. 121, no. 11, p. 118103 |0 PERI:(DE-600)1472655-5 |n 11 |p 118103 |t Physical review letters |v 121 |y 2018 |x 1079-7114 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/852741/files/PhysRevLett.121.118103.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://juser.fz-juelich.de/record/852741/files/PhysRevLett.121.118103.pdf?subformat=pdfa |
909 | C | O | |o oai:juser.fz-juelich.de:852741 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)130665 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences |1 G:(DE-HGF)POF3-550 |0 G:(DE-HGF)POF3-552 |2 G:(DE-HGF)POF3-500 |v Engineering Cell Function |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2018 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a American Physical Society Transfer of Copyright Agreement |0 LIC:(DE-HGF)APS-112012 |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PHYS REV LETT : 2015 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b PHYS REV LETT : 2015 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
920 | 1 | _ | |0 I:(DE-Juel1)ICS-2-20110106 |k ICS-2 |l Theorie der Weichen Materie und Biophysik |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)ICS-2-20110106 |
981 | _ | _ | |a I:(DE-Juel1)IBI-5-20200312 |
981 | _ | _ | |a I:(DE-Juel1)IAS-2-20090406 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|