000856114 001__ 856114
000856114 005__ 20240610121150.0
000856114 0247_ $$2doi$$a10.1021/acscatal.8b02935
000856114 0247_ $$2WOS$$aWOS:000449723900099
000856114 0247_ $$2altmetric$$aaltmetric:49706511
000856114 037__ $$aFZJ-2018-05760
000856114 082__ $$a540
000856114 1001_ $$0P:(DE-HGF)0$$aJ. Thiele, Martin$$b0
000856114 245__ $$aEnzyme-Polyelectrolyte Complexes Boost the Catalytic Performance of Enzymes
000856114 260__ $$aWashington, DC$$bACS$$c2018
000856114 3367_ $$2DRIVER$$aarticle
000856114 3367_ $$2DataCite$$aOutput Types/Journal article
000856114 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1540465749_25454
000856114 3367_ $$2BibTeX$$aARTICLE
000856114 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000856114 3367_ $$00$$2EndNote$$aJournal Article
000856114 520__ $$aUnderstanding interactions between polymers and enzymes to boost enzymatic activity is of high importance for application of enzymes in multicomponent systems, such as laundry, food, pharmaceuticals, or cosmetics. Proteases are widely used in industries and increased performance in the presence of polymers has been reported. Boosting of enzymes activity by polymers and understanding of the molecular principles is of high interest in biomedical and biotechnological applications. A molecular understanding of the boosting effect of poly(acrylic acid) (PAA) and poly(l-γ-glutamic acid) (γ-PGA) for a nonspecific subtilisin protease (Protein Database (PDB) ID: 1ST3) was generated through biophysical characterization (fluorescence correlation and circular dichroism spectroscopies, isothermal titration calorimetry), molecular dynamics simulations, and protease reengineering (site-saturation mutagenesis). Our study revealed that enthalpically driven interactions via key amino acid residues close to the protease Ca2+ binding sites cause the boosting effect in protease activity. On the molecular level electrostatic interactions results in the formation of protease-polyelectrolyte complexes. Site-saturation mutagenesis on positions S76, I77, A188, V238, N242, and K245 yielded an increased proteolytic performance against a complex protein mixture (trademark CO-3; up to ∼300% and ∼70%) in the presence of PAA and γ-PGA. Being able to fine-tune interactions between proteins and negatively charged polymers through integrative use of computational design, protein re-engineering and biophysical characterization proved to be an efficient workflow to improve protease performance.
000856114 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000856114 588__ $$aDataset connected to CrossRef
000856114 7001_ $$0P:(DE-HGF)0$$aDavari, Mehdi D.$$b1
000856114 7001_ $$0P:(DE-HGF)0$$aKönig, Melanie$$b2
000856114 7001_ $$0P:(DE-HGF)0$$aHofmann, Isabell$$b3
000856114 7001_ $$0P:(DE-HGF)0$$aJunker, Niklas$$b4
000856114 7001_ $$0P:(DE-HGF)0$$aMirzaei Garakani, Tayebeh$$b5
000856114 7001_ $$0P:(DE-HGF)0$$aVojcic, Ljubica$$b6
000856114 7001_ $$0P:(DE-Juel1)131961$$aFitter, Jörg$$b7$$ufzj
000856114 7001_ $$0P:(DE-HGF)0$$aSchwaneberg, Ulrich$$b8$$eCorresponding author
000856114 773__ $$0PERI:(DE-600)2584887-2$$a10.1021/acscatal.8b02935$$gp. acscatal.8b02935$$p10876–10887$$tACS catalysis$$v8$$x2155-5435$$y2018
000856114 8564_ $$uhttps://juser.fz-juelich.de/record/856114/files/acscatal.8b02935.pdf$$yRestricted
000856114 8564_ $$uhttps://juser.fz-juelich.de/record/856114/files/acscatal.8b02935.pdf?subformat=pdfa$$xpdfa$$yRestricted
000856114 909CO $$ooai:juser.fz-juelich.de:856114$$pVDB
000856114 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131961$$aForschungszentrum Jülich$$b7$$kFZJ
000856114 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000856114 9141_ $$y2018
000856114 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS CATAL : 2017
000856114 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000856114 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000856114 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000856114 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000856114 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000856114 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000856114 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000856114 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bACS CATAL : 2017
000856114 920__ $$lyes
000856114 9201_ $$0I:(DE-Juel1)ICS-5-20110106$$kICS-5$$lMolekulare Biophysik$$x0
000856114 980__ $$ajournal
000856114 980__ $$aVDB
000856114 980__ $$aI:(DE-Juel1)ICS-5-20110106
000856114 980__ $$aUNRESTRICTED
000856114 981__ $$aI:(DE-Juel1)IBI-6-20200312
000856114 981__ $$aI:(DE-Juel1)ER-C-3-20170113