Journal Article FZJ-2018-05760

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Enzyme-Polyelectrolyte Complexes Boost the Catalytic Performance of Enzymes

 ;  ;  ;  ;  ;  ;  ;  ;

2018
ACS Washington, DC

ACS catalysis 8, 10876–10887 () [10.1021/acscatal.8b02935]

This record in other databases:    

Please use a persistent id in citations: doi:

Abstract: Understanding interactions between polymers and enzymes to boost enzymatic activity is of high importance for application of enzymes in multicomponent systems, such as laundry, food, pharmaceuticals, or cosmetics. Proteases are widely used in industries and increased performance in the presence of polymers has been reported. Boosting of enzymes activity by polymers and understanding of the molecular principles is of high interest in biomedical and biotechnological applications. A molecular understanding of the boosting effect of poly(acrylic acid) (PAA) and poly(l-γ-glutamic acid) (γ-PGA) for a nonspecific subtilisin protease (Protein Database (PDB) ID: 1ST3) was generated through biophysical characterization (fluorescence correlation and circular dichroism spectroscopies, isothermal titration calorimetry), molecular dynamics simulations, and protease reengineering (site-saturation mutagenesis). Our study revealed that enthalpically driven interactions via key amino acid residues close to the protease Ca2+ binding sites cause the boosting effect in protease activity. On the molecular level electrostatic interactions results in the formation of protease-polyelectrolyte complexes. Site-saturation mutagenesis on positions S76, I77, A188, V238, N242, and K245 yielded an increased proteolytic performance against a complex protein mixture (trademark CO-3; up to ∼300% and ∼70%) in the presence of PAA and γ-PGA. Being able to fine-tune interactions between proteins and negatively charged polymers through integrative use of computational design, protein re-engineering and biophysical characterization proved to be an efficient workflow to improve protease performance.

Classification:

Contributing Institute(s):
  1. Molekulare Biophysik (ICS-5)
Research Program(s):
  1. 551 - Functional Macromolecules and Complexes (POF3-551) (POF3-551)

Appears in the scientific report 2018
Database coverage:
Medline ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; IF >= 10 ; JCR ; NCBI Molecular Biology Database ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > ER-C > ER-C-3
Institute Collections > IBI > IBI-6
Workflow collections > Public records
ICS > ICS-5
Publications database

 Record created 2018-10-10, last modified 2024-06-10


Restricted:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)