001     856114
005     20240610121150.0
024 7 _ |a 10.1021/acscatal.8b02935
|2 doi
024 7 _ |a WOS:000449723900099
|2 WOS
024 7 _ |a altmetric:49706511
|2 altmetric
037 _ _ |a FZJ-2018-05760
082 _ _ |a 540
100 1 _ |a J. Thiele, Martin
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Enzyme-Polyelectrolyte Complexes Boost the Catalytic Performance of Enzymes
260 _ _ |a Washington, DC
|c 2018
|b ACS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1540465749_25454
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Understanding interactions between polymers and enzymes to boost enzymatic activity is of high importance for application of enzymes in multicomponent systems, such as laundry, food, pharmaceuticals, or cosmetics. Proteases are widely used in industries and increased performance in the presence of polymers has been reported. Boosting of enzymes activity by polymers and understanding of the molecular principles is of high interest in biomedical and biotechnological applications. A molecular understanding of the boosting effect of poly(acrylic acid) (PAA) and poly(l-γ-glutamic acid) (γ-PGA) for a nonspecific subtilisin protease (Protein Database (PDB) ID: 1ST3) was generated through biophysical characterization (fluorescence correlation and circular dichroism spectroscopies, isothermal titration calorimetry), molecular dynamics simulations, and protease reengineering (site-saturation mutagenesis). Our study revealed that enthalpically driven interactions via key amino acid residues close to the protease Ca2+ binding sites cause the boosting effect in protease activity. On the molecular level electrostatic interactions results in the formation of protease-polyelectrolyte complexes. Site-saturation mutagenesis on positions S76, I77, A188, V238, N242, and K245 yielded an increased proteolytic performance against a complex protein mixture (trademark CO-3; up to ∼300% and ∼70%) in the presence of PAA and γ-PGA. Being able to fine-tune interactions between proteins and negatively charged polymers through integrative use of computational design, protein re-engineering and biophysical characterization proved to be an efficient workflow to improve protease performance.
536 _ _ |a 551 - Functional Macromolecules and Complexes (POF3-551)
|0 G:(DE-HGF)POF3-551
|c POF3-551
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Davari, Mehdi D.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a König, Melanie
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Hofmann, Isabell
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Junker, Niklas
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Mirzaei Garakani, Tayebeh
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Vojcic, Ljubica
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Fitter, Jörg
|0 P:(DE-Juel1)131961
|b 7
|u fzj
700 1 _ |a Schwaneberg, Ulrich
|0 P:(DE-HGF)0
|b 8
|e Corresponding author
773 _ _ |a 10.1021/acscatal.8b02935
|g p. acscatal.8b02935
|0 PERI:(DE-600)2584887-2
|p 10876–10887
|t ACS catalysis
|v 8
|y 2018
|x 2155-5435
856 4 _ |u https://juser.fz-juelich.de/record/856114/files/acscatal.8b02935.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/856114/files/acscatal.8b02935.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:856114
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)131961
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-551
|2 G:(DE-HGF)POF3-500
|v Functional Macromolecules and Complexes
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS CATAL : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b ACS CATAL : 2017
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-5-20110106
|k ICS-5
|l Molekulare Biophysik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ICS-5-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-6-20200312
981 _ _ |a I:(DE-Juel1)ER-C-3-20170113


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21