000856153 001__ 856153
000856153 005__ 20240712101001.0
000856153 0247_ $$2doi$$a10.5194/gmd-11-3235-2018
000856153 0247_ $$2ISSN$$a1991-959X
000856153 0247_ $$2ISSN$$a1991-9603
000856153 0247_ $$2Handle$$a2128/20079
000856153 0247_ $$2WOS$$aWOS:000441392400001
000856153 0247_ $$2altmetric$$aaltmetric:51672460
000856153 037__ $$aFZJ-2018-05789
000856153 082__ $$a550
000856153 1001_ $$0P:(DE-Juel1)164575$$aStadtler, Scarlet$$b0
000856153 245__ $$aIsoprene-derived secondary organic aerosol in the global aerosol–chemistry–climate model ECHAM6.3.0–HAM2.3–MOZ1.0
000856153 260__ $$aKatlenburg-Lindau$$bCopernicus$$c2018
000856153 3367_ $$2DRIVER$$aarticle
000856153 3367_ $$2DataCite$$aOutput Types/Journal article
000856153 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1552644486_21951
000856153 3367_ $$2BibTeX$$aARTICLE
000856153 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000856153 3367_ $$00$$2EndNote$$aJournal Article
000856153 520__ $$aWithin the framework of the global chemistry climate model ECHAM–HAMMOZ, a novel explicit coupling between the sectional aerosol model HAM-SALSA and the chemistry model MOZ was established to form isoprene-derived secondary organic aerosol (iSOA). Isoprene oxidation in the chemistry model MOZ is described by a semi-explicit scheme consisting of 147 reactions embedded in a detailed atmospheric chemical mechanism with a total of 779 reactions. Semi-volatile and low-volatile compounds produced during isoprene photooxidation are identified and explicitly partitioned by HAM-SALSA. A group contribution method was used to estimate their evaporation enthalpies and corresponding saturation vapor pressures, which are used by HAM-SALSA to calculate the saturation concentration of each iSOA precursor. With this method, every single precursor is tracked in terms of condensation and evaporation in each aerosol size bin. This approach led to the identification of dihydroxy dihydroperoxide (ISOP(OOH)2) as a main contributor to iSOA formation. Further, the reactive uptake of isoprene epoxydiols (IEPOXs) and isoprene-derived glyoxal were included as iSOA sources. The parameterization of IEPOX reactive uptake includes a dependency on aerosol pH value. This model framework connecting semi-explicit isoprene oxidation with explicit treatment of aerosol tracers leads to a global annual average isoprene SOA yield of 15% relative to the primary oxidation of isoprene by OH, NO3 and ozone. With 445.1Tg (392.1TgC) isoprene emitted, an iSOA source of 138.5Tg (56.7TgC) is simulated. The major part of iSOA in ECHAM–HAMMOZ is produced by IEPOX at 42.4Tg (21.0TgC) and ISOP(OOH)2 at 78.0Tg (27.9TgC). The main sink process is particle wet deposition, which removes 133.6 (54.7TgC). The average iSOA burden reaches 1.4Tg (0.6TgC) in the year 2012.
000856153 536__ $$0G:(DE-HGF)POF3-243$$a243 - Tropospheric trace substances and their transformation processes (POF3-243)$$cPOF3-243$$fPOF III$$x0
000856153 536__ $$0G:(DE-HGF)POF3-512$$a512 - Data-Intensive Science and Federated Computing (POF3-512)$$cPOF3-512$$fPOF III$$x1
000856153 536__ $$0G:(DE-Juel1)jicg23_20151101$$aChemical processes in the troposphere and their impact on climate (jicg23_20151101)$$cjicg23_20151101$$fChemical processes in the troposphere and their impact on climate$$x2
000856153 536__ $$0G:(DE-Juel-1)ESDE$$aEarth System Data Exploration (ESDE)$$cESDE$$x3
000856153 588__ $$aDataset connected to CrossRef
000856153 7001_ $$00000-0001-5978-0601$$aKühn, Thomas$$b1
000856153 7001_ $$0P:(DE-Juel1)16212$$aSchröder, Sabine$$b2
000856153 7001_ $$0P:(DE-Juel1)167439$$aTaraborrelli, Domenico$$b3
000856153 7001_ $$0P:(DE-Juel1)6952$$aSchultz, Martin G.$$b4
000856153 7001_ $$00000-0002-1404-6670$$aKokkola, Harri$$b5$$eCorresponding author
000856153 773__ $$0PERI:(DE-600)2456725-5$$a10.5194/gmd-11-3235-2018$$gVol. 11, no. 8, p. 3235 - 3260$$n8$$p3235 - 3260$$tGeoscientific model development$$v11$$x1991-9603$$y2018
000856153 8564_ $$uhttps://juser.fz-juelich.de/record/856153/files/invoice_Helmholtz-PUC-2018-38.pdf
000856153 8564_ $$uhttps://juser.fz-juelich.de/record/856153/files/gmd-11-3235-2018.pdf$$yOpenAccess
000856153 8564_ $$uhttps://juser.fz-juelich.de/record/856153/files/invoice_Helmholtz-PUC-2018-38.pdf?subformat=pdfa$$xpdfa
000856153 8564_ $$uhttps://juser.fz-juelich.de/record/856153/files/gmd-11-3235-2018.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000856153 8767_ $$8Helmholtz-PUC-2018-38$$92018-10-01$$d2018-10-11$$eAPC$$jZahlung erfolgt$$pgmd-2017-244
000856153 909CO $$ooai:juser.fz-juelich.de:856153$$pdnbdelivery$$popenCost$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire
000856153 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164575$$aForschungszentrum Jülich$$b0$$kFZJ
000856153 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16212$$aForschungszentrum Jülich$$b2$$kFZJ
000856153 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167439$$aForschungszentrum Jülich$$b3$$kFZJ
000856153 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)6952$$aForschungszentrum Jülich$$b4$$kFZJ
000856153 9131_ $$0G:(DE-HGF)POF3-243$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vTropospheric trace substances and their transformation processes$$x0
000856153 9131_ $$0G:(DE-HGF)POF3-512$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vData-Intensive Science and Federated Computing$$x1
000856153 9141_ $$y2018
000856153 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000856153 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000856153 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000856153 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bGEOSCI MODEL DEV : 2017
000856153 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000856153 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000856153 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000856153 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000856153 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000856153 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000856153 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000856153 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000856153 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000856153 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0
000856153 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x1
000856153 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x2
000856153 9801_ $$aAPC
000856153 9801_ $$aFullTexts
000856153 980__ $$ajournal
000856153 980__ $$aVDB
000856153 980__ $$aI:(DE-Juel1)IEK-8-20101013
000856153 980__ $$aI:(DE-Juel1)JSC-20090406
000856153 980__ $$aI:(DE-82)080012_20140620
000856153 980__ $$aAPC
000856153 980__ $$aUNRESTRICTED
000856153 981__ $$aI:(DE-Juel1)ICE-3-20101013