001     856155
005     20250129092433.0
024 7 _ |a 10.5194/amt-11-3861-2018
|2 doi
024 7 _ |a 1867-1381
|2 ISSN
024 7 _ |a 1867-8548
|2 ISSN
024 7 _ |a =
|2 ISSN
024 7 _ |a Atmospheric
|2 ISSN
024 7 _ |a measurement
|2 ISSN
024 7 _ |a techniques
|2 ISSN
024 7 _ |a (Internet)
|2 ISSN
024 7 _ |a 2128/19798
|2 Handle
024 7 _ |a WOS:000437054400001
|2 WOS
024 7 _ |a altmetric:49999793
|2 altmetric
037 _ _ |a FZJ-2018-05791
082 _ _ |a 550
100 1 _ |a Kaufmann, Martin
|0 P:(DE-Juel1)129128
|b 0
|e Corresponding author
245 _ _ |a A highly miniaturized satellite payload based on a spatial heterodyne spectrometer for atmospheric temperature measurements in the mesosphere and lower thermosphere
260 _ _ |a Katlenburg-Lindau
|c 2018
|b Copernicus
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1547644927_18246
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A highly miniaturized limb sounder for the observation of the O2 A-band to derive temperatures in the mesosphere and lower thermosphere is presented. The instrument consists of a monolithic spatial heterodyne spectrometer (SHS), which is able to resolve the rotational structure of the R-branch of that band. The relative intensities of the emission lines follow a Boltzmann distribution and the ratio of the lines can be used to derive the kinetic temperature. The SHS operates at a Littrow wavelength of 761.8nm and heterodynes a wavelength regime between 761.9 and 765.3nm with a resolving power of about 8000 considering apodization effects. The size of the SHS is 38 × 38 × 27mm3 and its acceptance angle is ±5°. It has an etendue of 0.01cm2sr. Complemented by front optics with an acceptance angle of ±0.65° and detector optics, the entire optical system fits into a volume of about 1.5L. This allows us to fly this instrument on a 3- or 6-unit CubeSat. The vertical field of view of the instrument is about 60km at the Earth's limb when operated in a typical low Earth orbit. Integration times to obtain an entire altitude profile of nighttime temperatures are on the order of 1min for a vertical resolution of 1.5km and a random noise level of about 1.5K. Daytime integration times are 1 order of magnitude shorter. This work presents the design parameters of the optics and a radiometric assessment of the instrument. Furthermore, it gives an overview of the required characterization and calibration steps. This includes the characterization of image distortions in the different parts of the optics, visibility, and phase determination as well as flat fielding.
536 _ _ |a 244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)
|0 G:(DE-HGF)POF3-244
|c POF3-244
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Olschewski, Friedhelm
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Mantel, Klaus
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Solheim, Brian
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Shepherd, Gordon
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Deiml, Michael
|0 P:(DE-Juel1)170005
|b 5
700 1 _ |a Liu, Jilin
|0 P:(DE-Juel1)168508
|b 6
700 1 _ |a Song, Rui
|0 P:(DE-Juel1)167408
|b 7
700 1 _ |a Chen, Qiuyu
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Wroblowski, Oliver
|0 P:(DE-Juel1)172055
|b 9
700 1 _ |a Wei, Daikang
|0 P:(DE-Juel1)171260
|b 10
700 1 _ |a Zhu, Yajun
|0 P:(DE-Juel1)156366
|b 11
700 1 _ |a Wagner, Friedrich
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Loosen, Florian
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Fröhlich, Denis
|0 P:(DE-Juel1)169462
|b 14
|u fzj
700 1 _ |a Neubert, Tom
|0 P:(DE-Juel1)133921
|b 15
700 1 _ |a Rongen, Heinz
|0 P:(DE-Juel1)133931
|b 16
700 1 _ |a Knieling, Peter
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Toumpas, Panos
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Shan, Jinjun
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Tang, Geshi
|0 P:(DE-HGF)0
|b 20
700 1 _ |a Koppmann, Ralf
|0 P:(DE-HGF)0
|b 21
700 1 _ |a Riese, Martin
|0 P:(DE-Juel1)129145
|b 22
773 _ _ |a 10.5194/amt-11-3861-2018
|g Vol. 11, no. 7, p. 3861 - 3870
|0 PERI:(DE-600)2505596-3
|n 7
|p 3861 - 3870
|t Atmospheric measurement techniques
|v 11
|y 2018
|x 1867-8548
856 4 _ |u https://juser.fz-juelich.de/record/856155/files/invoice_Helmholtz-PUC-2018-38.pdf
856 4 _ |u https://juser.fz-juelich.de/record/856155/files/amt-11-3861-2018.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/856155/files/invoice_Helmholtz-PUC-2018-38.pdf?subformat=pdfa
|x pdfa
856 4 _ |u https://juser.fz-juelich.de/record/856155/files/amt-11-3861-2018.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:856155
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB:Earth_Environment
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)129128
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)168508
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)167408
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)172055
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)171260
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)156366
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 14
|6 P:(DE-Juel1)169462
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 15
|6 P:(DE-Juel1)133921
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 16
|6 P:(DE-Juel1)133931
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 22
|6 P:(DE-Juel1)129145
913 1 _ |a DE-HGF
|l Atmosphäre und Klima
|1 G:(DE-HGF)POF3-240
|0 G:(DE-HGF)POF3-244
|2 G:(DE-HGF)POF3-200
|v Composition and dynamics of the upper troposphere and middle atmosphere
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ATMOS MEAS TECH : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-7-20101013
|k IEK-7
|l Stratosphäre
|x 0
920 1 _ |0 I:(DE-Juel1)ZEA-2-20090406
|k ZEA-2
|l Zentralinstitut für Elektronik
|x 1
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-7-20101013
980 _ _ |a I:(DE-Juel1)ZEA-2-20090406
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-4-20110106
981 _ _ |a I:(DE-Juel1)ICE-4-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21