000856428 001__ 856428 000856428 005__ 20220930130159.0 000856428 0247_ $$2doi$$a10.1002/cm.21470 000856428 0247_ $$2ISSN$$a0886-1544 000856428 0247_ $$2ISSN$$a1097-0169 000856428 0247_ $$2ISSN$$a1949-3584 000856428 0247_ $$2ISSN$$a1949-3592 000856428 0247_ $$2pmid$$apmid:30176121 000856428 0247_ $$2WOS$$aWOS:000451117400001 000856428 037__ $$aFZJ-2018-05827 000856428 041__ $$aEnglish 000856428 082__ $$a570 000856428 1001_ $$0P:(DE-Juel1)128843$$aZielinski, Alexander$$b0 000856428 245__ $$aReorientation dynamics and structural interdependencies of actin, microtubules and intermediate filaments upon cyclic stretch application 000856428 260__ $$aBognor Regis$$bWiley$$c2018 000856428 3367_ $$2DRIVER$$aarticle 000856428 3367_ $$2DataCite$$aOutput Types/Journal article 000856428 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1544090476_16461 000856428 3367_ $$2BibTeX$$aARTICLE 000856428 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000856428 3367_ $$00$$2EndNote$$aJournal Article 000856428 520__ $$aAny cell within a tissue is constantly confronted with a variety of mechanical stimuli. Sensing of these diverse stimuli plays an important role in cellular regulation. Besides shear stress, cells of the vascular endothelium are particularly exposed to a permanent cyclic straining originating from the interplay of outwards pushing blood pressure and inwards acting contraction by smooth musculature. Perpendicular alignment of cells as structural adaptation to this condition is a basic prerequisite in order to withstand deformation forces.Here, we combine live cell approaches with immunocytochemical analyses on single cell level to closely elucidate the mechanisms of cytoskeletal realignment to cyclic strain and consolidate orientation analyses of actin fibres, microtubules (MTs) and vimentin. We could show that strain‐induced reorientation takes place for all cytoskeletal systems. However, all systems are characterized by their own, specific reorientation time course with actin filaments reorienting first followed by MTs and finally vimentin. Interestingly, in all cases, this reorientation was faster than cell body realignment which argues for an active adaptation mechanism for all cytoskeletal systems. Upon actin destabilization, already smallest alterations in actin kinetics massively hamper cell morphology under strain and therefore overall reorientation. Depolymerization of MTs just slightly influences actin reorientation velocity but strongly affects cell body reorientation. 000856428 536__ $$0G:(DE-HGF)POF3-552$$a552 - Engineering Cell Function (POF3-552)$$cPOF3-552$$fPOF III$$x0 000856428 588__ $$aDataset connected to CrossRef 000856428 7001_ $$0P:(DE-Juel1)145159$$aLinnartz, Christina$$b1$$ufzj 000856428 7001_ $$0P:(DE-Juel1)157714$$aPleschka, Catharina$$b2 000856428 7001_ $$0P:(DE-Juel1)129308$$aDreissen, Georg$$b3$$ufzj 000856428 7001_ $$0P:(DE-Juel1)144199$$aSpringer, Ronald$$b4$$ufzj 000856428 7001_ $$0P:(DE-Juel1)128833$$aMerkel, Rudolf$$b5$$ufzj 000856428 7001_ $$0P:(DE-Juel1)128817$$aHoffmann, Bernd$$b6$$eCorresponding author$$ufzj 000856428 773__ $$0PERI:(DE-600)2536522-8$$a10.1002/cm.21470$$n9$$p385-394$$tCytoskeleton$$v75$$x1949-3584$$y2018 000856428 8564_ $$uhttps://juser.fz-juelich.de/record/856428/files/F6989815.pdf 000856428 8564_ $$uhttps://juser.fz-juelich.de/record/856428/files/F6989815.pdf?subformat=pdfa$$xpdfa 000856428 8767_ $$81027319$$92018-11-30$$d2018-12-06$$eColour charges$$jZahlung erfolgt$$z500 USD 000856428 909CO $$ooai:juser.fz-juelich.de:856428$$pOpenAPC$$pVDB$$popenCost 000856428 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128843$$aForschungszentrum Jülich$$b0$$kFZJ 000856428 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145159$$aForschungszentrum Jülich$$b1$$kFZJ 000856428 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129308$$aForschungszentrum Jülich$$b3$$kFZJ 000856428 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144199$$aForschungszentrum Jülich$$b4$$kFZJ 000856428 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128833$$aForschungszentrum Jülich$$b5$$kFZJ 000856428 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128817$$aForschungszentrum Jülich$$b6$$kFZJ 000856428 9131_ $$0G:(DE-HGF)POF3-552$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vEngineering Cell Function$$x0 000856428 9141_ $$y2018 000856428 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCYTOSKELETON : 2017 000856428 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000856428 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000856428 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000856428 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List 000856428 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000856428 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000856428 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000856428 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences 000856428 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record 000856428 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews 000856428 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000856428 920__ $$lyes 000856428 9201_ $$0I:(DE-Juel1)ICS-7-20110106$$kICS-7$$lBiomechanik$$x0 000856428 9801_ $$aAPC 000856428 980__ $$ajournal 000856428 980__ $$aVDB 000856428 980__ $$aI:(DE-Juel1)ICS-7-20110106 000856428 980__ $$aAPC 000856428 980__ $$aUNRESTRICTED 000856428 981__ $$aI:(DE-Juel1)IBI-2-20200312