000856428 001__ 856428
000856428 005__ 20220930130159.0
000856428 0247_ $$2doi$$a10.1002/cm.21470
000856428 0247_ $$2ISSN$$a0886-1544
000856428 0247_ $$2ISSN$$a1097-0169
000856428 0247_ $$2ISSN$$a1949-3584
000856428 0247_ $$2ISSN$$a1949-3592
000856428 0247_ $$2pmid$$apmid:30176121
000856428 0247_ $$2WOS$$aWOS:000451117400001
000856428 037__ $$aFZJ-2018-05827
000856428 041__ $$aEnglish
000856428 082__ $$a570
000856428 1001_ $$0P:(DE-Juel1)128843$$aZielinski, Alexander$$b0
000856428 245__ $$aReorientation dynamics and structural interdependencies of actin, microtubules and intermediate filaments upon cyclic stretch application
000856428 260__ $$aBognor Regis$$bWiley$$c2018
000856428 3367_ $$2DRIVER$$aarticle
000856428 3367_ $$2DataCite$$aOutput Types/Journal article
000856428 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1544090476_16461
000856428 3367_ $$2BibTeX$$aARTICLE
000856428 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000856428 3367_ $$00$$2EndNote$$aJournal Article
000856428 520__ $$aAny cell within a tissue is constantly confronted with a variety of mechanical stimuli. Sensing of these diverse stimuli plays an important role in cellular regulation. Besides shear stress, cells of the vascular endothelium are particularly exposed to a permanent cyclic straining originating from the interplay of outwards pushing blood pressure and inwards acting contraction by smooth musculature. Perpendicular alignment of cells as structural adaptation to this condition is a basic prerequisite in order to withstand deformation forces.Here, we combine live cell approaches with immunocytochemical analyses on single cell level to closely elucidate the mechanisms of cytoskeletal realignment to cyclic strain and consolidate orientation analyses of actin fibres, microtubules (MTs) and vimentin. We could show that strain‐induced reorientation takes place for all cytoskeletal systems. However, all systems are characterized by their own, specific reorientation time course with actin filaments reorienting first followed by MTs and finally vimentin. Interestingly, in all cases, this reorientation was faster than cell body realignment which argues for an active adaptation mechanism for all cytoskeletal systems. Upon actin destabilization, already smallest alterations in actin kinetics massively hamper cell morphology under strain and therefore overall reorientation. Depolymerization of MTs just slightly influences actin reorientation velocity but strongly affects cell body reorientation.
000856428 536__ $$0G:(DE-HGF)POF3-552$$a552 - Engineering Cell Function (POF3-552)$$cPOF3-552$$fPOF III$$x0
000856428 588__ $$aDataset connected to CrossRef
000856428 7001_ $$0P:(DE-Juel1)145159$$aLinnartz, Christina$$b1$$ufzj
000856428 7001_ $$0P:(DE-Juel1)157714$$aPleschka, Catharina$$b2
000856428 7001_ $$0P:(DE-Juel1)129308$$aDreissen, Georg$$b3$$ufzj
000856428 7001_ $$0P:(DE-Juel1)144199$$aSpringer, Ronald$$b4$$ufzj
000856428 7001_ $$0P:(DE-Juel1)128833$$aMerkel, Rudolf$$b5$$ufzj
000856428 7001_ $$0P:(DE-Juel1)128817$$aHoffmann, Bernd$$b6$$eCorresponding author$$ufzj
000856428 773__ $$0PERI:(DE-600)2536522-8$$a10.1002/cm.21470$$n9$$p385-394$$tCytoskeleton$$v75$$x1949-3584$$y2018
000856428 8564_ $$uhttps://juser.fz-juelich.de/record/856428/files/F6989815.pdf
000856428 8564_ $$uhttps://juser.fz-juelich.de/record/856428/files/F6989815.pdf?subformat=pdfa$$xpdfa
000856428 8767_ $$81027319$$92018-11-30$$d2018-12-06$$eColour charges$$jZahlung erfolgt$$z500 USD
000856428 909CO $$ooai:juser.fz-juelich.de:856428$$pOpenAPC$$pVDB$$popenCost
000856428 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128843$$aForschungszentrum Jülich$$b0$$kFZJ
000856428 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145159$$aForschungszentrum Jülich$$b1$$kFZJ
000856428 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129308$$aForschungszentrum Jülich$$b3$$kFZJ
000856428 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144199$$aForschungszentrum Jülich$$b4$$kFZJ
000856428 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128833$$aForschungszentrum Jülich$$b5$$kFZJ
000856428 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128817$$aForschungszentrum Jülich$$b6$$kFZJ
000856428 9131_ $$0G:(DE-HGF)POF3-552$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vEngineering Cell Function$$x0
000856428 9141_ $$y2018
000856428 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCYTOSKELETON : 2017
000856428 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000856428 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000856428 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000856428 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000856428 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000856428 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000856428 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000856428 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000856428 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000856428 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000856428 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000856428 920__ $$lyes
000856428 9201_ $$0I:(DE-Juel1)ICS-7-20110106$$kICS-7$$lBiomechanik$$x0
000856428 9801_ $$aAPC
000856428 980__ $$ajournal
000856428 980__ $$aVDB
000856428 980__ $$aI:(DE-Juel1)ICS-7-20110106
000856428 980__ $$aAPC
000856428 980__ $$aUNRESTRICTED
000856428 981__ $$aI:(DE-Juel1)IBI-2-20200312