000856431 001__ 856431
000856431 005__ 20240711092232.0
000856431 0247_ $$2doi$$a10.1016/j.calphad.2018.05.009
000856431 0247_ $$2ISSN$$a0364-5916
000856431 0247_ $$2ISSN$$a1873-2984
000856431 0247_ $$2WOS$$aWOS:000444666200019
000856431 037__ $$aFZJ-2018-05830
000856431 082__ $$a540
000856431 1001_ $$0P:(DE-HGF)0$$aJantzen, Tatjana$$b0$$eCorresponding author
000856431 245__ $$aAddition of TiO2 and Ti2O3 to the Al2O3-FeO-Fe2O3-MgO System
000856431 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2018
000856431 3367_ $$2DRIVER$$aarticle
000856431 3367_ $$2DataCite$$aOutput Types/Journal article
000856431 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1539672246_2493
000856431 3367_ $$2BibTeX$$aARTICLE
000856431 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000856431 3367_ $$00$$2EndNote$$aJournal Article
000856431 520__ $$aThe Al2O3-FeO-Fe2O3-MgO-TiO2-Ti2O3 system has been thermodynamically assessed using all available experimental data. Titanium was introduced into the thermodynamic description of the liquid phase as well as of solid solution phases such as MeO, Cubic Spinel, Titania Spinel, Corundum and Pseudobrookite. Particular attention was given to the phase Cubic Spinel which forms a wide miscibility range amongst Fe3O4-TiFe2O4-TiMg2O4-TiMn2O4. In addition, the present modelling of the phase Pseudobrookite allows the description of the experimentally determined mutual solubility between Al2TiO5, MgTi2O5, FeTi2O5, Fe2TiO5 and Ti3O5. 9 titanates as stoichiometric phases have also been included in the database.
000856431 536__ $$0G:(DE-HGF)POF3-111$$a111 - Efficient and Flexible Power Plants (POF3-111)$$cPOF3-111$$fPOF III$$x0
000856431 588__ $$aDataset connected to CrossRef
000856431 7001_ $$0P:(DE-HGF)0$$aHack, Klaus$$b1
000856431 7001_ $$0P:(DE-Juel1)129813$$aYazhenskikh, Elena$$b2
000856431 7001_ $$0P:(DE-Juel1)129765$$aMüller, Michael$$b3
000856431 773__ $$0PERI:(DE-600)1501512-9$$a10.1016/j.calphad.2018.05.009$$gVol. 62, p. 187 - 200$$p187 - 200$$tCalphad$$v62$$x0364-5916$$y2018
000856431 8564_ $$uhttps://juser.fz-juelich.de/record/856431/files/1-s2.0-S0364591618300658-main.pdf$$yRestricted
000856431 8564_ $$uhttps://juser.fz-juelich.de/record/856431/files/1-s2.0-S0364591618300658-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000856431 909CO $$ooai:juser.fz-juelich.de:856431$$pVDB
000856431 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129813$$aForschungszentrum Jülich$$b2$$kFZJ
000856431 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129765$$aForschungszentrum Jülich$$b3$$kFZJ
000856431 9131_ $$0G:(DE-HGF)POF3-111$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vEfficient and Flexible Power Plants$$x0
000856431 9141_ $$y2018
000856431 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000856431 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCALPHAD : 2017
000856431 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000856431 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000856431 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000856431 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000856431 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000856431 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000856431 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000856431 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000856431 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000856431 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000856431 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000856431 980__ $$ajournal
000856431 980__ $$aVDB
000856431 980__ $$aI:(DE-Juel1)IEK-2-20101013
000856431 980__ $$aUNRESTRICTED
000856431 981__ $$aI:(DE-Juel1)IMD-1-20101013